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ABSTRACT 

 

         Avalanche experts recognize that short slopes have different runout characteristics 

when compared to taller slopes. There have been several residential avalanche accidents in 

Canada on or near short slopes, yet little research has been conducted in this field. 

         Data were collected at 48 short slope paths in four Canadian mountain ranges, 

including the Coast, Columbia, Rocky Mountains and Quebec ranges. Field studies 

included topographic surveys and estimation of extreme runout distance in each path. 

         Statistical runout models were developed using the runout ratio and multiple 

regression methods. Regional differences between mountain ranges were not apparent in 

the models. Probabilistic runout estimates are provided by these models, which are best 

applied to avalanche paths less than 275 m high. 

         A model was developed using multiple regression methods to estimate the average 

friction coefficient for use in an avalanche dynamics model. This model relates the average 

friction coefficient to two topographic variables. 
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1 INTRODUCTION 

 

Beware the pine tree’s withered branch! 

Beware the awful avalanche! 

 

Henry Wadsworth Longfellow, Excelsior 

 

1.1 Effects of snow avalanches 

         In Canada, snow avalanches affect both people and the results of their industry 

including roads, residential developments, industrial facilities, mines, railways, power and 

communication transmission lines, ski resorts, forestry operations and backcountry 

recreation operations. In areas where avalanche terrain and human activities overlap, it is 

often essential to define where avalanches can occur and how far they will run on and near 

the bottom of a slope. The runout of an avalanche can be defined as the point of farthest 

reach of an avalanche deposit within an avalanche path (McClung and Schaerer, 1993, 

p. 115). The specification of the runout distance for the largest, or extreme, avalanche 

expected within a path is of great importance for land-use planning and zoning in snow 

avalanche prone areas. Accurate specification of the runout distance is of greatest 

importance in terms of minimizing the risk to people and structures in avalanche prone 

terrain. Additionally, there are important economic considerations involved when 

specifying runout distances, since certain types of land uses may be excluded due to zoning 

restrictions based on avalanche risk studies. 

         There are more than a dozen research papers on statistical avalanche runout methods. 

These methods use terrain parameters to predict extreme avalanche runout positions, and 

are based on fitting extreme runout positions in a particular mountain range to either 

extreme value or normal distributions. While the research to date has typically focused on 

taller slopes with fall heights greater than 300 metres, short slopes are also recognized by 

avalanche experts as a very important topic, both from a research and a practical 

engineering perspective (McClung and Lied, 1987; Schaerer, 1991; McKittrick and Brown, 

1993; Jamieson and Stethem, 2002). Since 1950, avalanches have killed 31 people in and 

near residential or public buildings in Canada in six avalanche events (Stethem and 
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Schaerer, 1979, p. 89-93; Stethem and Schaerer, 1980, p. 19-23; Schaerer, 1987, p. 14-15; 

Jamieson and Geldsetzer, 1996, p. 171-173, 178-179; Government of Quebec, 2000). 

Sixteen of these fatalities and three of the avalanche events occurred in either Quebec or 

Newfoundland, illustrating that avalanche problems affecting residential areas are not 

confined to western Canada (Canadian Avalanche Association [CAA], 2002a, p. 2). Of 

this number, twenty fatalities (65%) occurred at the base of slopes with vertical fall 

heights of 150 m or less (B. Jamieson, personal communication, 2002). These numbers 

illustrate the importance of the understanding of avalanche runout for short slopes. 

Knowledge of avalanches from short slopes is also very important for transportation 

corridors and resource industries, including forestry and mining. These industries often 

have facilities or operations situated in or passing through terrain with potentially 

hazardous short slopes for which there is little or no documentation of historical avalanche 

activity. The ability to estimate runout distances for short slopes that affect these 

industries can potentially reduce economic losses to these industries and increase worker 

and public safety. 

          Avalanche consultants are acutely aware that the existing statistical models for 

estimating avalanche runout are not very effective for short slopes. These models typically 

underestimate the runout distances when compared to field observations for short 

avalanche paths (McClung and Lied, 1987). Consequently, practitioners typically apply 

very conservative margins of error to runout estimates when using these models for short 

slopes. This additional margin of error is coupled with the intuition and experience of the 

avalanche consultant to obtain runout estimates within acceptable risk levels. For at least a 

decade, the eminent Canadian avalanche researcher, Peter Schaerer of Vancouver, Canada 

has called for research on avalanche runout for short slopes (Schaerer, 1991). European 

researchers have also acknowledged this gap in the research (B. Jamieson, personal 

communication, 2002), but to date, limited research in this area has been conducted. This 

project aims to fill in this gap in the research, and provide some answers to some of the 

scale problems noted in previous avalanche runout studies (e.g. McClung and Mears, 

1991; Nixon and McClung, 1993). 
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1.2 Types of snow avalanches 

          A snow avalanche can be defined as a volume of snow, usually more than several 

cubic metres, moved by gravity at perceptible speed (CAA, 2002a, p. 3). Snow avalanches 

may or may not contain other materials such as rock, soil, or ice. Avalanches release in 

two distinct ways: loose snow avalanches (Figure 1.1) and slab avalanches (Figure 1.2). 

Loose snow avalanches initiate at or near the 

surface when a small volume of low cohesion 

snow (typically less than 1 m3) fails and starts 

moving down a slope (CAA, 2002a, p. 3). This 

mass of snow spreads outwards in an inverted 

v-shape on the slope, entraining 

(accumulating) additional snow as it moves 

down the slope. Loose snow avalanches, also 

known as point releases, are typically small, 

but occasionally involve large masses of snow, 

particularly when the snow is wet. Slab 

avalanches are initiated by a failure at depth in 

the snowpack, followed by the sliding 

movement of a cohesive slab down the slope. 

This slab initially moves as a cohesive unit, but 

then breaks up into smaller 

particles. Most of the larger and 

more destructive avalanches 

initiate as slab avalanches, and 

are considered the more 

dangerous of the two types of 

avalanches (McClung and 

Schaerer, 1993, p. 61). This 

study is primarily concerned with 

runout of the largest avalanche 

event within an avalanche path, 

Figure 1.1. Loose snow avalanche 
(B. Jamieson photo) 

 

Figure 1.2. Slab avalanche (B. Jamieson photo) 
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which is typically associated with dry snow slab avalanches. 

 

1.3 Avalanche terrain 

          An avalanche area, or avalanche terrain, is defined as a location with one or more 

avalanche paths (McClung and Schaerer, 1993, p. 89). An avalanche path is defined as a 

fixed location within an 

avalanche area where 

avalanches move. 

Sometimes, evidence of 

avalanche activity is very 

obvious, with numerous 

avalanche paths affecting a 

particular feature such as a 

highway (Figure 1.3). 

However, avalanche terrain 

is sometimes difficult to 

identify because evidence of 

avalanche activity may be 

obscured by vegetation, 

avalanche paths are above 

treeline, there are no trimlines 

(boundaries between vegetation 

of different age classes) or 

vegetation in the paths, or paths 

are overlooked because of their 

small size (Figure 1.4). The size 

of avalanche paths can vary 

from small paths with a vertical 

fall height of approximately 

50 m (e.g. large road cuts, river 

banks) to very large paths with 

Figure 1.3. Numerous avalanche paths affecting the Bear 
Pass, British Columbia, Canada (British Columbia 
Ministry of Transportation photo) 

Figure 1.4 Smaller avalanche paths that are obscured 
by vegetation. The full width of this slope is considered 
avalanche terrain and capable of producing destructive 
avalanches (B. Jamieson photo) 
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vertical fall heights on the order of 

2000 to 3000 m (Figure 1.3). While 

larger paths can be easy to identify on 

the ground and their runout zone 

mapped, smaller paths are often 

difficult to identify. Consequently, 

short avalanche paths are often the 

ones where problems arise due to 

human activities in avalanche terrain. 

         An avalanche path is typically 

divided into three distinct zones: a 

starting zone, a track and a runout 

zone (Figure 1.5). These zones may be 

difficult to distinguish, particularly for 

small paths. The starting zone is the 

location where unstable snow fails and 

begins to move down slope. The 

starting zone typically has slope 

angles exceeding 25°. Small 

avalanches may stop in the starting 

zone. The track is the part of the avalanche path that connects the starting zone with the 

runout zone, and is sometimes referred to as the transition zone. The track is often poorly 

defined for short slopes, and may not exist in some cases. The slope angle in the track is 

typically between 15° and 25°. During larger (extreme) avalanche events, avalanches 

typically attain a maximum velocity in the track, and have the smallest speed variations 

there (McClung and Schaerer, 1993, p. 89). Small to medium size avalanches may stop in 

the track. The runout zone is defined as the part of an avalanche path where avalanches 

rapidly decelerate, deposit avalanche mass and stop moving. The slope angle in the runout 

zone is typically less than 15°. Sometimes, the largest avalanches in a path may runout on 

a lake or the valley bottom, or may run up the opposite side of the valley. 

 

5 

Figure 1.5 An avalanche path showing the three 
distinct zones: starting zone, track and runout 
zone. Black line shows the outline of the 
avalanche path from the starting zone to the 
highway (British Columbia Ministry of 
Transportation photo) 

 

Starting zone 

Runout zone 

Track 



1.4 Examples of residential avalanche accidents on short slopes 

          To illustrate the importance of avalanches on short slopes in Canada, two examples 

of residential areas impacted by avalanches are discussed below. 

          Blanc Sablon is a small village located in eastern Quebec, near the Labrador border 

(Figure 1.6). Prior to 10 March, 1995 a blizzard had deposited 82 cm of snow in a period 

of 24 hours, with winds in excess of 100 kilometres per hour (Jamieson and Geldsetzer, 

1996, p. 178-179). Several houses were situated near the bottom of an approximately 85 m 

high slope that accumulated large amounts of snow during the blizzard. On the night of 

10 March, an avalanche released on this slope and impacted a house at the base of the 

slope, tearing off the roof and pushing it to the other side of the street. The avalanche mass 

buried a man, woman and son, and only the woman survived. In addition to damage to the 

house, two sheds were destroyed, a power line was damaged and a pick-up truck was 

partially buried. Total property damage from this avalanche was estimated at $80,000, but 

additional costs since the avalanche (e.g. investigations, legal fees, mitigation) have 

greatly exceeded this value. Following this accident, a 3 m high by 1 km long snow fence 

was constructed along the top of the cliff above Blanc Sablon to reduce the build-up of 

snow drifts and reduce the likelihood of similar events. More than a dozen houses, 
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Figure 1.6 Houses located near the bottom of a short slope at Blanc Sablon, Quebec. Two 
fatalities occurred in a house located near these houses on 10 March, 1995. These houses 
have since been relocated (B. Jamieson photo). 



including those shown on Figure 1.6, were not impacted by this avalanche but have since 

been relocated (Jamieson and Geldsetzer, 1996, p. 179). 

          A second fatal avalanche accident occurred in the village of Kangiqsualujjuaq, 

located in northern Quebec. On 1 January, 1999, approximately 500 people were gathered 

at the local school for New Year’s Eve festivities (Government of Quebec, 2000). The 

school is located near the base of an approximately 85 m high slope on which an 

avalanche released while people were gathered in the school (Figure 1.7). The avalanche 

continued beyond the base of the slope and struck the school gymnasium, killing 9 people 

and injuring another 25. 

          These examples illustrate the potential serious consequences of having residential 

areas located near the base of short slopes, and the need for improved knowledge of 

potential runout distances from short slopes. 
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Figure 1.7 Short slope located adjacent to residential buildings in Kangiqsualujjuaq, 
northern Quebec. School that was impacted by an avalanche on 1 January, 1999 can be 
observed at the far right of the photo. Buildings at left are sheds (B. Jamieson photo). 



1.5 Avalanche motion 

          An understanding of avalanche motion and dynamics is important to determine the 

potential avalanche velocities within a path, and to relate these velocities to potential 

impacts to buildings and other structures or resources in the path. Being able to estimate 

velocities in the runout zone is also important for zoning purposes since most avalanche 

zoning methods incorporate a velocity dependent criterion, usually in the form of impact 

pressure (e.g. Switzerland, 1984; Höller and Schaffhauser, 2001; CAA, 2002b, p. 16). 

          Describing the dynamics of avalanche motion is a complicated process that involves 

aspects of fluid, particle and soil mechanics (Harbitz, Issler, and Keylock, 1998). The 

mathematical problem of describing avalanche motion over complicated terrain is far from 

solved, and many different avalanche dynamics models are used by experts around the world. 

Some of these models have a theoretical basis, involve solving differential equations for mass, 

energy or momentum, and treat avalanches as granular material, a fluid, or a combination of 

the two (Harbitz et al., 1998). Others are based on a combination of theoretical mathematical 

models and empirical input parameters (e.g. Salm, Burkard, and Gubler, 1990). Presently, all 

of these models require a degree of expert judgement to determine the appropriate input 

parameters for realistic modelling of velocity and runout. 

          When compared to wet snow avalanches (those containing large amounts of liquid 

water between snow particles) dry snow avalanches typically attain the highest velocities, 

often produce the largest impact pressures and travel farthest in the runout zone (Mears, 1992, 

p. 9). Consequently, dry snow slab avalanches are typically used as the design case avalanche 

for engineering purposes. Only the effects of dry snow slab avalanches are considered in this 

study. 

          Dry snow avalanches (Figure 1.8) consist of a mix of snow particles and air (called a 

dense core) at the bottom of an avalanche. This is sometimes accompanied by a powder 

component, or powder avalanche, which usually travels in front of and above the dense 

core and, sometimes, by an associated air blast which travels in front of the dense core or 

powder component. These two components are typically associated with large, dry 

flowing avalanches that attain sufficiently high speeds during transport over long 

distances. The powder component and air blast are not typically associated with shorter 

slopes and are thus not considered in this study. 
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          With dry slab avalanches, after 

release of snow in the starting zone, 

the slab breaks into blocks or 

particles. As the avalanche moves 

farther downslope in the path, these 

particles become smaller due to 

particle-to-particle collisions and 

interaction with the ground or snow 

surface on which the avalanche 

moves. Eventually, this mass will 

evolve into a relatively high-density 

mixture of snow particles and air, and 

the motion can be described as 

sliding, flowing, airborne powder, or 

mixed (Mears, 1992, p. 9). As the 

flow reaches a velocity greater than 

approximately 10 m·s-1, the smaller 

particles in this mixture become 

suspended by the turbulence of the 

entrained air and forms a low-density 

powder cloud on the exterior of the 

dense material, or core. As this mass 

flows down slope, new snow is entrained (added to the avalanche mass) near the front of the 

avalanche while mass sometimes drops out of the back of the avalanche. 

          When an avalanche reaches a sufficiently low angle slope, deceleration and deposition 

increase, and the avalanche comes to a rest. Depending on the size of the avalanche and the 

terrain, this may occur in the starting zone, track or runout zone but, for the extreme events, 

will be in the runout zone. In the case of short slopes, the transition from broken blocks of the 

slab to a dense flow may or may not occur, depending on the length of the path, amount of 

snow involved and the terrain characteristics. On very short slopes, the slab blocks may 

remain partially intact well into the runout zone. 
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Starting position 

Runout zone 

Powder component 

Dense flow 
(core) 

Figure 1.8 Large avalanche in motion. Note the 
airborne powder component and dense flow at the 
front of the mass (British Columbia Ministry of 
Tranportation photo) 



          Traditional studies of larger avalanches define the location where the slope angle first 

decreases to 10° as the start of the runout zone, and define the runout distance as the 

horizontal distance measured from this point to the extreme runout position (McClung and 

Schaerer, 1993, p. 117). However, many avalanches do not reach a 10° point before coming to 

a stop, leaving this definition open to discussion. Avalanches that do not reach the 10° slope 

angle position would thus be described as having a “negative” runout distance. For short 

slopes, runout likely begins at slope angles higher than 10°, and the deceleration phase of 

flowing snow avalanches may begin on slope angles less than 25° (Gubler, Hiller, Klausegger, 

and Suter, 1986). 

          Estimates of the maximum velocity that may be attained by dry snow avalanches on 

paths with variable vertical fall heights are shown on Table 1.1. These data are based on 

limited velocity measurement data, destructive effects of avalanches and avalanche dynamics 

calculations (Mears, 1992, p. 11). Field studies have shown that relatively high velocities (e.g. 

> 25 m·s-1) can be attained by avalanches with vertical fall heights of less than 200 m 

(McClung and Schaerer, 1993, p. 105; Gubler et al., 1986), implying that the destructive 

potential of small avalanches can be quite high, despite the limited vertical fall height. 

          Although a powder cloud component can form for avalanche speeds greater than 

10 m·s-1 (Mears, 1992, p. 9), the powder component for short slopes is usually not important 

since there is limited time for a large powder cloud to form ahead of and above the dense 

flow. Thus, for short slopes, only the dense flowing core component of the avalanche is 

typically considered for engineering applications. 

 

1.6 Indicators of avalanche size and frequency 

          There are several ways to estimate both the size and frequency of large avalanches 

within a given avalanche path, and for estimating runout distances. Oral and written history 
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Vertical fall height (m) Velocity range (m/s) 

100 - 200 20 - 35 

200 - 500 35 - 55 

500 - 1000 55 - 70 

Table 1.1 Typical dry snow avalanche maximum 
velocity estimates (From Mears, 1992, p. 13) 

  



and direct observations of avalanches are the most reliable method for determining the runout 

of avalanches in a path. Oral information about the extent of past avalanches can come from 

local avalanche experts or others who have lived in the area for years and may have observed 

events. Written history may come from newspapers, historical records, books, diaries or 

photographs (CAA, 2002a, p. 9). 

          Vegetation within and adjacent to avalanche paths can provide clues about the 

maximum extent of extreme avalanches, and the return period of smaller events within the 

path (Martinelli, 1974). Avalanche motion can damage vegetation such as trees and bushes, 

and leave evidence of impacts for decades. Table 1.2 shows some vegetation indicators as a 

function of avalanche frequency. 

          Analysis of aerial photographs and topographic maps can aid in identifying the extent of 

avalanche activity. Such analyses can be used to define the starting zones, tracks and runout 

zones, and estimate the extent of damage to vegetation from avalanches. Where several time 

series of aerial photographs are available, inferences about the return periods of avalanches 

can sometimes be made. 

          Weather and snow records can be used to estimate how much snow may accumulate in 

an avalanche area, and provide clues about the largest avalanches that may be expected in a 

path. Variables such as the maximum 3-day storm snow accumulation can be used in 

combination with avalanche dynamics models to estimate extreme runout distances (e.g. 

Gubler, 1994). 

          Surficial materials can sometimes be used to estimate extreme runout and frequency of 

avalanches in a path. Materials such as vegetation, rock and soil can be transported by large 
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Return period (years) Vegetation indicators 

1 - 10 Track supports grasses, shrubs, flexible trees up to 2 m high; 
broken timber on ground and at path boundaries 

10 - 30 Predominantly pioneer species; young trees similar to 
adjacent forest; broken timber on ground at path boundaries 

30 - 100 Old uniform-aged trees of pioneer species; young trees of 
local climax species; old and partially decomposed debris 

100 - 300 Mature, uniform-aged trees of local climax species; debris 
completely decomposed; increment core data required 

Table 1.2. Vegetation as an avalanche-frequency indicator (From Mears, 1992, p. 21)  



avalanches and deposited in the runout zone. The location of this material can provide clues as 

to the location of the extreme runout for larger avalanche events. Organic material, such as 

peat, in the runout zone can sometimes be carbon-dated to provide estimates of return periods 

for large avalanches (Boucher, Hétu, and Filion, 1999). 

 

1.7 Conventional or dynamics avalanche runout models 

          Numerous models have been developed since the mid-1950s to simulate the motion 

of dry, dense flowing avalanches (e.g. Voellmy, 1955; Perla, Cheng, and McClung, 1980; 

Perla, Lied, and Kristensen, 1984; Norem, Irgens, and Scheildrop, 1987; Salm et al., 1990; 

McClung, 1990; McClung, Nettuno, and Savi, 1994; McClung and Mears, 1995). These 

models differ significantly from each other, demonstrating the complexity of avalanche 

dynamics and lack of detailed knowledge of avalanche flow mechanisms (Keylock and 

Barbolini, 2001). Harbitz et al. (1998) summarize many of the dynamics models used in 

practice and some of the theoretical models that have yet to be used for practical purposes 

(Table 1.3). All of these models require input of terrain characteristics and avalanche 

material properties, and provide output on avalanche velocity and runout distance. Some 

models also provide information on flow depth, deposit depth and the lateral extent of the 

avalanche deposit. 

          Terrain measurements for input into dynamics models are typically obtained from 

topographic maps and/or field measurements, and include measurements of slope angles 

in the starting zone, track and runout zone. Avalanche characteristics such as slab 

thickness in the starting zone and friction at the base of the avalanche are typically 

obtained by combining published values, local experience and expert judgment. 

          The basic concept behind most dynamics models is that the snow accelerates in the 

starting zone, reaches a maximum velocity in the track, and subsequently decelerates and 

stops in the runout zone. While the terrain measurements in these models are fixed for a 

particular path, some models are highly sensitive to changes in the material properties, and 

thus the velocity and runout estimates can vary significantly. Additionally, some models 

with more than one input parameter for material properties (e.g. models with both basal 

and turbulent flow friction coefficients) can have non-unique solutions for runout distance. 

For this reason, caution must be applied when using dynamic avalanche models, and they 
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are often used in conjunction with statistical models for runout, field evidence of runout 

and expert judgment. 

          The main limitation of using the dynamics method is that the parameters required for 

the models are typically difficult to estimate, and usually require an intuitive feel and 

experience of the modeler to provide a reliable estimate of runout. Advantages of using 

the dynamics method include the ability to model atypical and complicated paths that 

cannot be modelled by statistical methods. Other advantages include the ability to relate 

runout estimates in terms of return intervals and risk, a requirement for some jurisdictions 

(Jónasson et al., 1999) 

 

1.8 Statistical avalanche runout models 

          Bovis and Mears (1976) and Lied and Bakkehøi (1980) introduced an entirely 

different method for calculating runout distances based on statistical methods rather than 

avalanche dynamics models. These researchers found that extreme runout measurements 

for a particular mountain range can be used to estimate the runout for a particular path 

within this range by applying methods from probability and statistics. The methods of 

Bovis and Mears (1976) and Lied and Bakkehøi (1980) use topographic terrain parameters 

to estimate runout distances, and introduced the reference β point in the runout zone from 

which to measure runout distances (Figure 1.9). They defined the β point as the position at 

which the slope angle first reaches 10° when proceeding downslope from the starting 

zone. The corresponding β angle is defined as the angle (measured from the horizontal) at 

the β point to the starting position of the avalanche path. It is common to quantify extreme 

runout distances by using the α angle, defined as the angle (measured from the horizontal) 

at the extreme runout position observed in the field to the starting position of the 

avalanche path. The parameter α is similar to that used by Scheidegger (1973) to estimate 

the average friction coefficient for large landslides. By the use of multiple regression 

procedures, Lied and Toppe (1989) showed that using various topographical terrain 

parameters in addition to the β angle, only the β angle was statistically significant. 

Subsequently, Lied and Toppe (1989) developed regression equations relating the α angle 

to β angle for mountains in Norway, and similar expressions have been developed for 

mountain ranges in Canada and the United States (McClung, Mears, and Schaerer, 1989), 
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Iceland (Johannesson,1998) and Austria (Lied, Weiler, Bakkehøi, and Hopf, 1995). 

          A second statistical method used for estimating extreme runout distances is known 

as the runout ratio method. McClung and Mears (1991) found that the extreme runout 

positions for avalanche paths in a particular mountain range fit an extreme value 

probability density function similar to that used for water discharge from floods. With this 

method, a non-dimensional runout ratio is plotted versus the probability of avalanches not 

exceeding a given point on a path (non-exceedence probability). The runout ratio is 

defined as the ratio of the horizontal distance from the β point to the extreme runout 

position, ∆x, to the horizontal reach from the starting position to the β point, Xβ 

(Figure 1.9). The runout ratio can take on values ranging from -∞ to +∞, with a negative 

value indicating that the extreme runout position is located upslope of the defined β point 

location (typically 10º slope angle) The non-exceedence probability, P, is defined as the 

fraction of runout ratios in a particular mountain range that do not exceed a given ratio. 

Studies conducted by researchers for several ranges around the world (e.g. McClung and 
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Figure 1.9 Geometry of example avalanche path used for statistical avalanche runout 
models 
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Mears, 1991; Nixon and McClung, 1993) have found significant statistical relationships 

between the runout ratio and non-exceedence probability (e.g R2 > 0.95) when applied to 

paths in a single mountain range (Mears, 1992, p. 26). Their results also show that each 

mountain region consists of a different population and thus each range should be analyzed 

separately. 

          It has been found in practice that short slopes tend to run propotionally farther than 

large slopes, and therefore the models developed for particular mountain ranges using the 

runout ratio method may not be applicable to short slopes (McClung and Lied, 1987; 

Nixon and McClung, 1993). It is this finding that has provided the impetus for the current 

study. 

          One benefit of statistical runout models over dynamics models is that the errors in 

runout distances are quantified in standard statistical terms. Thus, a degree of reliability of 

the statistical runout estimation can be applied with this type of model. The main 

disadvantage of statistical methods is that they do not work for atypical paths or paths with 

run-up the opposite side of the valley, or where dataset parameters are not available for a 

mountain range. Atypical paths may include paths with unusually steep or small starting 

zones, unusually confined paths, paths that turn corners, or where paths that include two or 

more merging paths. Other limitations that have been identified (McClung, 2001a) 

include: paths with more than one β point; paths that have steep runout zones; and paths 

with no β point in the runout zone. Additionally, most statistical methods do not 

incorporate return intervals and do not directly give the risk. Recent research by McClung 

(2000) makes it possible to relate statistical estimates of extreme runout to return periods, 

providing both spatial and temporal estimates of extreme avalanche runout. 

 

1.9 Influence of terrain and climate on runout 

          It is generally accepted that avalanche frequency is a function of both terrain and 

climate (McClung and Schaerer, 1993, p. 121). Terrain factors that affect avalanche 

frequency include: slope incline of the track, shape of the track, ruggedness or roughness 

of the track, vegetative cover in the path, exposure to sun and wind, and starting zone size 

and steepness (McClung and Schaerer, 1993, p. 121). The climate variables with the 

greatest influence on avalanche frequency include: magnitude, frequency and rate of 
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snowfall; air temperature; 

and wind speed and 

direction (McClung and 

Schaerer, 1993, p. 121). 

Numerous studies have been 

conducted that attempt to 

relate avalanche activity or 

frequency to climate 

variables for operational 

avalanche forecasting (e.g. 

Judson and Erickson, 1973; 

Buser, 1983; Salway, 1976). However, operational avalanche forecasting is mostly 

concerned with day-to-day changes in meteorological variables, while engineering studies 

for runout distances need to consider long term climate extremes common within a 

mountain range. 

          The relationship between avalanche frequency and either runout or magnitude is 

shown schematically on Figure 1.10. In this diagram, magnitude and runout are plotted on 

the same axis, although these terms are not interchangeable. Runout distance is the 

variable that is typically used in engineering applications to assess the size, or magnitude 

of an avalanche. Avalanche volume or mass may also be used, but is of limited usefulness 

in avalanche zoning applications because of the difficulty of modelling avalanche mass 

balance (Sovilla, Somavilla, and Tomaselli, 2001). It can be observed in Figure 1.10 that 

avalanche events range from high-frequency low-magnitude avalanches to low-frequency 

low-magnitude avalanches. For engineering applications, one is interested in the low 

frequency-high magnitude or runout events, known as the “tail” events on the F-M 

(frequency-magnitude) graph shown in Figure 1.10. In practice, avalanche events with 

return periods of 100 to 300 years are typically used for zoning and design of structures. 

Occasionally, very low frequency events such as those with return periods of 1000 years 

are used (e.g. Kristensen, Harbitz, and Harbitz, 2000), although this is an exception rather 

than a usual practice. 

          Although the relationship between avalanche frequency, terrain and climate is 
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Figure 1.10. Relationship between avalanche frequency 
and magnitude (After Jamieson, 2001) 
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relatively well understood and is used as a basis for avalanche forecasting programs 

throughout the world, there exists little quantitative research on the relationship between 

avalanche magnitude and climate. Most studies relate avalanche runout to terrain 

variables, and assume that for longer return periods (e.g. 100 to 300 years), climatic 

conditions resulting in extreme avalanches will occur within most avalanche prone 

mountain ranges. This argument is complicated by the observation that statistical runout 

models from one mountain range are not applicable to other mountain ranges (Mears, 

1992, p. 25). The combined effect of terrain and climate variables is thus accounted for in 

statistical models by developing different models for individual mountain ranges. 

 

1.10 Applications to avalanche hazard planning and mitigation 

          In Canada, avalanche hazards to structures, transportation corridors and residential 

areas are often mitigated by hazard or risk mapping, whereby the element at risk is 

situated in an area where avalanche return periods are acceptably low, and/or potential 

impact pressures are acceptably small (CAA, 2002b, p.16). When the risk from avalanches 

cannot be reduced to acceptable levels by location planning, mitigation measures such as 

avalanche control programs or defense structures may be applied. In Canada, avalanche 

control programs are not considered acceptable for permanently occupied structures such 

as residential developments (CAA, 2002a, p. 18), so avoidance of the hazard is typically 

applied and, failing this, defense structures may be used. 

          The hazard or risk mapping process includes several steps in defining the avalanche 

problem and hazard areas. Some of the following methods may be applied: terrain analysis 

of maps and air photos; field studies of terrain; study of vegetation for signs of past 

avalanches; use of oral and written records of avalanches; weather and snow records; 

study of surficial materials; application of statistical models; and application of dynamic 

avalanche models (CAA, 2002a, p. 9-10). While not all of the methods listed above may 

be suitable for a particular problem, experts will typically combine several of these 

methods in their analysis, weighting the methods in which they have greater confidence. 

Thus, application of statistical and dynamic avalanche models is only one part of the 

avalanche problem. Both of these methods are explored in this thesis for their applicability 

to a dataset consisting of avalanche paths with small vertical fall heights. 
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1.11 Objectives and Outline 

          The objectives of this thesis are: 

• to develop models based on existing statistical methods for estimating runout for 

short slopes in the Canadian Coast, Columbia, Rocky and Quebec mountain ranges; 

• explore the applicability of avalanche dynamics models for modelling short slopes 

and develop some practical tools for defining model input parameters; 

 

          With regard to the first objective, it should be emphasized that the purpose of this 

research is to assess a new dataset for short slopes using existing methods for statistical 

runout modelling. Many alternate methods could potentially prove useful to analyze the 

dataset, but are considered beyond the scope of this research. 

          This research provides new tools for avalanche researchers and consultants to better 

estimate runout distances for short slopes in Canada. By using existing methods to analyze 

the data, these tools will be presented in a form already familiar to practioners and will 

hopefully result in easier application of the models. Urban and residential development, 

forestry and mining industries may also benefit from the results of this research. 

          Chapter 2 of this study reviews relevant literature on statistical and dynamics runout 

models, and extreme value statistics. Chapter 3 describes the field methods undertaken for 

this study, including descriptions of the study areas, site selection, field equipment, survey 

procedures and type of data collected. Limitations and sources of error from the field 

program are also discussed in Chapter 3. In Chapter 4, statistical models are used to relate 

runout distances to terrain parameters. In Chapter 5, a method for estimating friction 

parameters for the Leading Edge dynamics model is presented and the applicability of this 

model to short slopes is discussed. Chapter 6 presents the conclusions from this study and 

suggestions for future research. 
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2. LITERATURE REVIEW 

 

2.1 Introduction 

          This review focuses on models of avalanche dynamics and of statistical runout 

estimation, application of extreme value statistics to runout estimation, and the affect of 

climate on runout distances. Section 2.2 reviews the extensive literature that exists for 

dynamic runout models. The application of statistical methods for estimating runout is 

reviewed in Section 2.3. A review of previous work on the relationship between climate 

and runout is presented in Section 2.4. The results of the literature review are summarized 

in Section 2.5. 

 

2.2 Models of avalanche dynamics 

          The traditional method for determining runout distances involves selecting friction 

parameters as input into a dynamics model, and using this model to simulate the motion of 

dense flow avalanches in a particular avalanche path (McClung and Schaerer, 1993, 

p. 115). Most dynamics models initiate avalanche movement at the top of the starting zone 

(Figure 1.8), with the avalanche material starting at rest, typically in the form of a dense 

slab. After initiation of avalanche motion, the avalanche material quickly accelerates down 

the slope as a result of gravitational force, with larger dry avalanches having two principle 

flow components: dense and powder (Figure 1.8). Frictional forces at the boundaries of 

the avalanche material, and internal shear of flow in some models, provide resistance to 

avalanche movement. In theory, the frictional parameters in dynamics models are physical 

parameters. In practice, their values are based on fitting the models to real avalanches, 

resulting in typical ranges of empirical values for the friction parameters. The mass of the 

avalanche is assumed to remain constant throughout the avalanche path in early models, 

while some more recent models allow for entrainment of additional mass into the front of 

the avalanche and deposition of mass from the back of the avalanche in the track and 

runout zone. The runout position is defined either as the centre or tip of the mass that is 

farthest from the starting zone. 

          Most avalanche dynamics models output the runout position and a velocity profile of 

an avalanche in a path. Some models also provide additional information such as the flow 
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height and width of the avalanche. 

          Voellmy’s (1955) pioneering work on avalanche dynamics included equations of 

avalanche motion that are still the basis for many modern dynamics models. The Voellmy 

model describes the movement of the dense flow component of an avalanche as a 

turbulent fluid, and assumes that snow deforms freely under shear. This model is based on 

a Coulomb dry friction term and a dynamic term proportional to the square of the velocity 

(Keylock and Barbolini, 2001). In its simplest form, the fundamental equations from the 

Voellmy model for the maximum velocity, v and the runout distance, s are: 

where ξ represents turbulence in the flow and has units of acceleration (m·s-2) and µ 

represents basal friction and is dimensionless. Both of these coefficients are thought to 

depend on the shape of the track and the volume of the avalanche, and are assigned values 

based primarily on Swiss experience and fitting runout distances to observed avalanches 

(Mears, 1992, p. 29). The variable h represents the height of the dense avalanche flow, ψ 

is the slope angle and g is the gravitational constant. Avalanche velocities are calculated 

segment-by-segment along the path profile, and the avalanche stopping position is 

calculated in the last segment where the mass has insufficient velocity to surpass the end 

of the segment. 

          Salm et al. (1990) expanded and refined the Voellmy model based on Swiss 

experience and many have used their model extensively for avalanche hazard mapping in 

Switzerland (Salm, 1997) and elsewhere. Their model uses the same principles and 

assumptions as the Voellmy model, but provides separate formulations for both 

unconfined and laterally confined avalanche paths, and uses a modified expression for 

runout distance. Also, model inputs such as the initial slab thickness and the friction 

parameters are based on Swiss experience and must be extrapolated to other mountain 

ranges. 

          The next important development in avalanche dynamics modelling was the 

introduction of the PCM model (Perla et al., 1980), which is a simple extension of the 

Voellmy (1955) model. This model makes several important assumptions, including: 
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modelling motion at the centre-of-mass of the avalanche; constant mass with no 

entrainment or deposition; viscous shear is ignored; and the resistive force terms are 

assumed to be proportional to the combined sliding friction and dynamic drag (Mears, 

1992, p. 27). This model uses friction coefficients similar to the Voellmy (1955) and Salm 

(1990) models, with µ representing basal friction and a mass to drag ratio, M/D being 

similar to the ξ parameter in the Salm (1990) model. 

          The model of Perla et al. (1984), commonly known as the PLK model, described 

avalanche motion as a flow of several hundred particles released from a starting position. 

This marked a move away from modelling an avalanche as a single mass continuum, 

instead modelling avalanche motion as a collection of particles that move randomly and 

independently under the influence of gravity and resistive forces at the base, lateral and 

top boundaries of the avalanche (Perla et al., 1984). The PLK model used a similar force-

momentum equation to that used in the PCM (Perla et al., 1980) and Salm (1990) models, 

with the addition of a random velocity parameter that allows for a range of particle 

velocities at each point in the simulation. Entrainment of additional snow particles into the 

flow was accounted for by adding one new particle per metre of length. Deposition of 

mass from the flow was accounted for by allowing particles to drop out of the flow when 

their velocity reached zero. 

          The NIS model (Norem et al., 1987, 1989) was developed by the Norwegian 

Geotechnical Institute (NGI) as a two-dimensional model that simulates avalanche motion 

as a granular continuum that behaves as a non-linear, visco-elastic material. This model is 

relatively complicated when compared to previous models, with constitutive equations 

that include: normal stress, shear stress, pore pressure, effective pressure, velocity, 

Coulomb friction, viscosity, cohesion, and the density of the granular material. This model 

uses physical input parameters as compared to empirical friction coefficients used by most 

other models, yields a velocity distribution with avalanche flow height, and has been 

calibrated using field experiments (e.g. Gubler et al., 1986). 

          Pioneering work in the field of avalanche motion as granular flow was conducted by  

Dent (1986) and Savage and Hutter (1989) . The model of McClung (1990) further moved 

away from modelling avalanche motion as fluid, instead assuming that dense avalanche 

material behaves as a granular material. McClung (1990) derived an expression for 

22 



avalanche velocity that was mathematically similar to the PCM model (Perla et al., 1980), 

with several importance differences. First, only one resistance term, µ, was assumed in the 

model, located at the base of the flow. This resistance term is assumed to increase as a 

function of the avalanche position down the path, and consequently varies with velocity. 

In this model, µ does not explicitly incorporate plowing, entrainment and deposition of 

snow but these are implicitly accounted for by calibrating the model with field data 

(McClung, 1990). A second resistance term, D0, represents turbulent (air/dust) drag at the 

top of the flow, but is much less important in the model than basal resistance. 

          The model of McClung and Mears (1995) further developed the idea of avalanche 

flow as a granular material, expanding the simple theory of McClung (1990) into a more 

sophisticated model known as the Leading Edge Model (LEM). The LEM was designed 

for calculating run-up and runout in the deceleration phase of avalanche motion. Important 

aspects of this model include: 

• initial conditions for incoming avalanche velocity must be assumed 

• the stopping position of the avalanche deposit is calculated for the tip of the avalanche, 

as opposed to many other models that estimate runout as the stopping position of the 

centre-of-mass of the avalanche 

• the model estimates the mean deposition depth 

• passive snow pressure is included in the model which indirectly accounts for slope-

angle dependence 

• a slope angle correction is applied to account for momentum losses at slope angle 

changes 

          Possibly the most important advantage of this model is that runout is calculated for 

the leading edge (tip) of the dense flow which is very important when specifying runout 

distances for land-use planning. When compared to centre-of-mass models, the LEM 

predicts longer runout distances (McClung and Mears, 1995). 

          All of the models discussed above have a strong dependence on poorly constrained 

resistance terms. Without tranference or good local datasets (e.g. Switzerland), runout 

estimates from dynamic models exhibit large variations due largely to the poorly 

constrained range of friction parameters. Transference involves using information from 

known runout distances in other paths to estimate the friction parameters and consequently 
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runout distances for a specific path. Sigurðsson et al. (1998) used length-scale tranference 

methods for the PCM (Perla et al., 1980) model, whereby α-angles were calculated as non-

linear functions of the friction parameters, µ and M/D. Nearest Neigbour models (e.g. 

Buser, 1983; Lied et al., 1995) can also be used for transference in which it is possible to 

find the most similar avalanche paths by systematically comparing topographic parameters 

and thus estimate friction parameters and runout distances for a specific path. 

          Many other avalanche dynamics models have been developed, and significant 

developments are still occurring. Harbitz et al. (1998) provide an extensive review of 

avalanche dynamics models, including some of the more recent models. These include the 

VARA model (Natale et al., 1994) a one-dimensional model that takes a hydraulic-

continuum approach to avalanche motion; and hydraulic-continuum models of higher 

dimensionality (e.g. Naaim and Ancey, 1992; Bartelt and Gruber, 1997). 

 

2.3 Statistical runout models 

          The traditional method for determining runout distances since the work of Voellmy 

(1955) has been based on using one of the dynamic avalanche models discussed in 

Section  2.2. The work of Bovis and Mears (1976), Lied and Bakkehøi (1980) and 

Bakkehøi et al. (1983) introduced a different method for predicting avalanche runout 

distances. Their work was based on regression analyses of topographic (terrain) 

parameters for a set of avalanche paths in a mountain range, for which the α angle defines 

the runout position and is the dependent variable to be determined. Based on an analysis 

of 206 avalanche paths in Norway, Lied and Bakkehøi (1980) and Bakkehøi et al. (1983) 

found that runout distances, or α, could be related to four easily measured parameters: the 

β angle (see Section 1.8 for definitions); H, the vertical distance from the starting point to 

the low point in a parabola that best fits the path longitudinal profile; θ, the average slope 

angle of the top 100 vertical metres of the starting zone, and; y″, the second derivitive of 

the polynomial function 

best fitted to the path profile (i.e. α = f [β, H, θ, y"]). Perhaps the most important result of 

this work was the definition the of the β point, a reference point from which to measure 
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runout distances that has been used in all subsequent work on statistical runout prediction. 

          Further analysis of the Norwegian data by Bakkehøi et al. (1983) showed that the 

variable β could explain most of the variation in the regression equation for α, and that the 

α angle could be related to the β angle by the simple expression 

where SE is the standard error of regression and R is the correlation coefficient. The 

standard error is an estimate that measures the dispersion of observed values about a 

regression line. The correlation coefficient is a measure of the strength of the linear 

relationship between two variables (Mendenhall and Sincich, 1996, p. 127), in this case α 

and β. The coefficient of determination, R2 is the square of the correlation coefficient in 

simple linear regression, and represents the proportion of the sum of squares of deviations 

of the predictor variable about its mean that can be attributed to a linear relationship 

between two variables (Mendenhall and Sincich, 1996, p. 134), in this case α and β. The 

adjusted multiple coefficient of determination, adjusted R2, is similar to R2 but takes into 

account both the sample size and number of parameters in the regression model 

(Mendenhall and Sincich, 1996, p. 192). These terms are defined at this point as they will 

be used throughout this thesis. 

          Subsequent work by Martinelli (1986), McClung and Lied (1987) and Nixon and 

McClung (1993) confirmed the applicability of using topographic parameters to estimate 

maximum, or extreme, runout distances, and that the β angle is – for most datasets – the 

only statistically significant parameter for predicting α. Nixon and McClung (1993) found 

that other topographic parameters in their study were not statistically significant and did 

not improve their model beyond levels attributable to measurement error in their data. 

          Research conducted by Mears (1988; 1989) and McClung et al. (1989) found that 

the regression equation developed by the Norwegian Geotechnical Institute for avalanche 

paths in Norway was not consistantly applicable to mountain ranges in other parts of the 

world, and consequently that each distinct mountain range has a unique population of 

extreme avalanches that needs to be analysed separately (Mears, 1992, p. 26). This led to 

different regression parameters being developed for other mountain ranges, including: the 

Purcell, Rocky Mountain and Coast Ranges in Canada (McClung and Mears, 1991; Nixon 

and McClung, 1993); Coastal Alaska, Colorado Rockies and the Sierra Nevada in the 
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United States of America (McClung and Mears, 1991); the Austrian Alps (Lied et al., 

1995); and mountain ranges in Iceland (Jóhannesson, 1998). 

          The work of McClung and Lied (1987) presented an alternative method for 

estimating extreme runout, one that is also based on topographical parameters. Instead of 

using regression analyses on topographic parameters, McClung and Lied (1987) 

introduced the concept of a dimensionless runout ratio and applied concepts from 

probability theory and extreme value statistics to analyse their data. McClung et al. (1989) 

and McClung and Mears (1991) extended and expanded upon this theory, whereby they 

found that extreme runout distances fit an extreme value probability distribution, or 

Gumbel distribution (Gumbel, 1958), similar to that used to describe extreme values for 

other natural hazards such as discharge from floods. They found that the runout ratio, 

∆x / Xβ (Figure 1.9), follows an extreme value distribution with respect to a reduced 

variate, or a non-exceedence probability expressed in the form of the equation: 

where ∆x is the horizontal distance from the β point (where the slope first decreases to 

10º) to the extreme runout position, Xβ is the horizontal distance from the starting position 

to the β point, P is the non-exceedence probability or the fraction of runout ratios that do 

not exceed a given value, and u and b are location and scale parameters in a Gumbel 

distribution, respectively. In this equation, the variables ∆x and Xβ are determined either 

during field studies or from maps, and the variables u and b are determined by regression 

analyses for a set of avalanche paths. Rank order statistical methods are used to assess the 

significance of the regression (e.g. Watt et al., 1989). 

          McClung and Mears (1991) presented analyses using the runout ratio method for 

several mountain ranges, including: the Canadian Rockies and Purcells; Western Norway; 

Coastal Alaska; the Colorado Rockies; and the Sierra Nevada in California. They found 

that, for non-exceedence probabilities greater than 0.5, a Gumbel distribution provided a 

good fit to their data set of over 600 avalanche paths for each mountain range. Subsequent 

analyses provided location and scale parameters for the British Columbia Coast Mountains 

(Nixon and McClung, 1993), the combined Madison and Gallatin Ranges of southwest 

Montana (McKittrick and Brown, 1993), and the mountains of Iceland (Jóhannesson, 

1998). 
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          McKittrick and Brown (1993) presented, for the first time, analyses of a dataset that 

included mostly shorter slopes, with all the paths surveyed in southwest Montana having a 

vertical fall height of less than 553 m (mean of 248 m). All studies prior to this included 

data for mostly larger slopes, with a mean vertical fall height of approximately 700 m. 

Perhaps the most important result of this work was the definition of the β point as the 

location where the slope first decreases to 18º, rather than the value of 10º commonly used 

for taller slopes. By defining the location of the β point higher in the avalanche path, 

McKittrick and Brown (1993) obtained a better fit of their dataset using a Gumbel 

distribution. A possible interpretation of this finding is that extreme avalanches on shorter 

slopes begin decelerating on steeper inclines than extreme avalanches on larger slopes a 

hypothesis that is explored in this thesis. 

          Although McKittrick and Brown (1993) offered no physical explanation for the 

improved fit of their data for a β point located at 18º, other studies have found that locking 

of particles in the avalanche flow begins at slope angles of about 25º, and that large, dry 

avalanches are beginning a decelerating phase at this slope angle (Gubler et al., 1986; 

McClung and Mears, 1995). Thus, there may be a physical basis for using higher slope 

angles for definining the location of the β point, particularly for shorter slopes in which 

the avalanche mass may not reach a high velocity (e.g. > 30 m s-1) before beginning to 

decelerate. 

          As early as 1987, McClung and Lied (1987) noted that their model likely did not 

apply well to short slopes with a vertical fall height of less than 350 m. McClung and 

Mears (1991) and Mears (1989) noted the importance of length-scale effects for data from 

the Colorado Rocky Mountains and Sierra Nevada Range of California. To investigate 

this, McClung and Mears (1991) partitioned data into two somewhat arbitrary datasets, 

based on Xβ  = 1000 m. For the Colorado data, they found that higher runout ratios 

(relatively longer runout distances) were associated with Xβ < 1000 m, which seems to 

support the hypothesis that extreme avalanches on smaller slopes runout proportionately 

farther than on taller slopes. 

          Nixon and McClung (1993) also noted scale effects with the Rocky Mountains and 

Coast Ranges of Canada, and partitioned their data for the Rocky Mountains at 

Xβ  = 1500 m and at Xβ = 2100 m for the Coast Mountains. Using a non-exceedence 
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probability of 0.99 for the Rocky Mountain dataset, they found that runout distances are 

15 % higher than the non-partitioned data for Xβ < 1500 m and 28 % higher for 

Xβ > 1500 m. These results cleary illustrate the importance of scale effects in runout 

modelling, and indictate that this phenomenon may be even more pronounced for short 

slopes. 

          McClung (2000), combines both temporal and spatial distributions in the prediction 

of avalanche runout. This work is based on extreme avalanche runout distances fitting a 

Gumbel distribution, as discussed above, and the avalanche arrival rate fitting a Poisson 

distribution (McClung, 1999). This model also provides a means of estimating the 

probabilistic extreme avalanche width. Although his model framework leaves open the 

possibility of using a distribution for runout distances other than Gumbel, his findings are 

supported by data from over 600 avalanche paths in eight mountain ranges. 

          Barbolini et al. (2000) have also presented recent work on avalanche runout 

prediction by integrating statistical and dynamics models for five European avalanche 

sites. In this paper they propose a method for avalanche hazard zoning that integrates both 

statistical and dynamic models and provides a level of confidence in the model output. 

 

2.4 Climatic effects on runout 

          Avalanche runout is known to be dependent on numerous variables that can be 

classified into two main groups: terrain and snowpack (Bovis and Mears, 1976; Mears, 

1984). The effect of terrain parameters on runout has been the subject of extensive 

research, as discussed in Section 2.3, and has resulted in several statistical models that 

relate α to β. The type of snow involved in the avalanche and the climatic conditions 

leading up to the avalanche are not explicitly included in the analysis, but are intrinsically 

included in these empirically derived formulae. Some dynamics models, such as the Swiss 

model (Salm et al., 1990), incorporate empirically developed snow depth (slab thickness) 

variables for the different climate regions within Switzerland, thus incorporating climate 

factors into the runout model. 

          Because statistical models are designed to be applicable to extreme avalanche 

events, it is assumed that, over a long time period, optimal climatic conditions will 

develop in each path at least once, and that avalanches will run to extreme runout 
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positions in response to these conditions (Lied and Bakkehøi, 1980). Despite this, there 

are known to be distinct differences in runout characteristics that depend on regional 

climate variations (Mears, 1984). Consequently, there is no single model to describe 

runout in all avalanche paths, and different models have been developed for different 

climatic regions. 

          Although there is conclusive evidence that climate and snowpack characteristics are 

important components of extreme avalanche runout, few studies have attempted to 

separate the climate effects from the terrain effects in the runout models or identify 

specific climate parameters that may be important in runout prediction. Mears (1984) goes 

as far as stating that: “Climatically-induced variables may, in fact, be more important in 

determining runout potential than some easily-measured terrain variables”. Mears (1984) 

compared extreme runout distances for paths with the smallest α angles found in the 

coastal Alaska and central Colorado areas. Although he did not conduct a rigourous 

statistical analysis, he found that the mean α angle for the paths in Colorado was lower 

than in coastal Alaska and, consequently, the Colorado paths had propotionately longer 

runout distances. He attributed this to climatic differences between the two regions, and 

provided several reasons, including: the more shallow soft slabs in Colorado quickly 

fluidize while the thick, well-bonded Alaskan slabs encounter more resistance along the 

path; the lower elevation Alaskan tracks and runout zones often contain wet snow that 

absorbs energy from the avalanche mass; and the larger, well developed vegetation in 

Alaska serves to dissipate energy more quickly than the open forests in Colorado. While 

all of these factors are a result of climatic differences, specific climate or snowpack 

parameters were not identified to help quantify the climatic effect. 

          McClung (2001b) did analyses on climate variables for avalanche paths in western 

Canada, including the mean maximum water equivalent in the starting zone, a categorical 

Wind Index (Schaerer, 1977) which contributes to snow supply, and several vegatation 

parameters. However, this study only addressed avalanche frequency and avalanche size, 

not extreme avalanche runout distances. 

 

2.5 Summary 

          Some dynamic and statistical (topographic) models for avalanche runout were 
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reviewed in this chapter. Dynamics models were first developed to model the movement 

of dense flowing snow and typically provided information on avalanche velocity and 

runout distances. Two main types of avalanche dynamics models emerged from these 

studies, including those that model avalanche motion as a turbulent fluid and those that 

model avalanche motion as granular flow. These models have become more complicated 

through the years as more rigourous computational methods are available for analysis and 

the theoretical basis for the models incorporates more complex physical aspects of 

avalanche motion. Dynamics models can be used to estimate avalanche runout distances, 

but the estimates are highly dependent upon user experience in estimating parameters such 

as friction coefficients and snow slab dimensions. 

          Statistical models were developed that required the input of simple terrain 

parameters that can either be obtained from topographic maps or surveyed in the field. By 

regression analysis of terrain parameters collected for a set of avalanche paths in a 

mountain range, models were developed to provide statistical estimates of runout distance. 

Most notably, the β point was defined as the location in an avalanche path where the slope 

first decreases to 10º, and it was found that avalanche runout distances could be related to 

the angle β measured from the β point to the top of the starting zone. Two methods for 

developing runout models for a given mountain range emerged from this research: the α-β 

(regression) method and the runout ratio method. 

          Both dynamics and statistical models for avalanche runout prediction incorporate 

regional differences between different mountain ranges. These differences are intrinsically 

part of the models and are empirically derived. Although the importance of climatic 

effects on avalanche runout has been recognized, only limited research has been 

conducted to quantify these effects and their relationship with extreme runout distances. 
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3. METHODS 

 

3.1 Study areas 

          Data for this project were collected at avalanche paths located in the Canadian 

Coast, Columbia, and Rocky Mountains and mountain areas of Quebec during the 

summers of 2000 and 2001 (Figure 3.1; Table 3.1). Two sites in the Mount Baker area 

(Cascade Range) of Washington State are included with the Coast Range paths. Detailed 

field studies were conducted by the author at 46 individual sites during the 2000 and 2001 

field seasons. An additional two sites located in Quebec (Kangiqsualujjuaq and Blanc 

Sablon) were previously surveyed by Bruce Jamieson and incorporated into this study. 

Thus, a total of 48 sites are included in this study. 

          Data were collected from four different mountain ranges in order to assess the affect 

of the different climate regimes in each range on avalanche runout distances. The Coast 

Range is classified as a maritime snow climate, and is characterized by relatively heavy 

snowfall and mild temperatures (McClung and Schaerer, 1993, p. 18). The Rocky 

Mountain Range is classified as a continental snow climate, and is characterized by 

relatively low snowfall and cold temperatures. The Columbia Mountain Range is 

classified as an intermountain (or transitional) snow climate, which is a transitional zone 

between maritime and continental conditions (McClung and Schaerer, 1993, p. 17-18). 

The Chic Choc Range and other sites in Quebec have been classified as an intermountain 

snow climate for this study, although they’re relatively close to coastal areas. 

 

3.2 Site selection 

          Sites were selected in the four study area mountain ranges based on several criteria, 

including: vertical fall height; reasonably good access by vehicle and foot; well defined 

path characteristics (e.g. starting and runout zones); well defined extreme runout position; 

and no run-up on the opposite side of the valley or runout into a water body. These criteria 

are discussed in the following sections. 

          It was considered important to obtain a geographically diverse sample so that the 

affect of climate on avalanche runout distances could be studied for the four mountain 

ranges. Sixteen sites were surveyed in the Coast Mountains, 10 sites were surveyed in the 
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Table 3.1 Study sites and locations 

Mountain Range Location Study sites 

Coast Mountains  Vancouver North Shore 
mountains, BC 

Mount Seymour 

Mount Garibaldi area, BC Brohm Ridge, Brohm Ridge Col, 
Brohm Village West Slope 

Whistler, BC Whistler East Ridge, Flute Summit 
NE Ridge, Franz’s Run Cliffs 

Goldbridge area, BC Donnely Creek, Green Mountain 

Near the Mount Baker Ski 
Area, Washington 

Mount Baker Southwest, Mount 
Baker Northeast 

Coquihalla summit, BC Zum Southwest Peak, Zopkios 
Ridge 

Duffy Lake Road area, BC Blowdown Creek 

Near the Apex Mountain 
Resort, Penticton, BC 

Apex Mountain Main, Apex 
Mountain East 

 

Columbia Mountains Glacier National Park, BC Schroeder Shoulder 

Kootenay Pass, BC Cornice Ridge North, Power Creek 
Ridge, Siwash East Ridge, 
Kootenay Pass 1, Kootenay Pass 2 

Highway 3a near Retallack, 
BC 

Stenson Creek Headwall 

Near the Whitewater Ski 
Area, BC 

Hummingbird Pass, Evening 
Ridge, Backside Ridge 

 

Kananaskis Country, AB Black Prince, Shark Mountain, 
Quarry Mountain 

Banff National Park, 
Icefields Parkway, AB 

Crowfoot Bumps, Pulpit Pimple, 
Hector Ridge North, Hector Ridge 
South, Bow Summit 

In the Fernie Ski Resort, 
BC 

Knot Quite 

Southwest of Fernie, BC Harvey Bowl 

Rocky Mountains 
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Columbias, 15 sites were surveyed in the Rockies, and 7 sites were surveyed in the Chic 

Choc Range or other parts of Quebec, giving a small sample of sites from each range, but 

a reasonably large sample size (48 paths) for the combined dataset. The sites vary in 

latitude from approximately 48°47' to 51°38' North and in longitude from 65°55' to  

123°10' West. Elevations of the starting zones of the paths range from approximately 85 m 

to 2500 m above mean sea level. Thus, a geographically diverse sample set was obtained 

both in terms of longitude and latitude, as well as in terms of elevation range. 

          The vertical fall height of the avalanche paths, measured from the top of the starting 

zone to the bottom of the runout zone, was a prime consideration in this study. Based on 

previous studies (e.g. McClung and Lied, 1987; McKittrick and Brown, 1993) it was 

decided that paths with vertical fall heights less than or equal to 350 m would be 

considered for the study. However, it was sometimes not possible to estimate the vertical 

fall height of the path accurately until the survey was complete, and consequently some 

paths were surveyed that exceeded 350 m in height. There was no lower limit criterion for 

Table 3.1 (continued) 

Mountain Range Location Study sites 

Rocky Mountains 
(continued) 

Near the Lake Louise Ski 
Resort, AB 

Redoubt Mountain, Wolverine 
Ridge 

Banff National Park, Bow 
Valley, AB 

Copper Mountain 

Near the Sunshine Ski 
Resort, AB 

Wawa Bowl 

Highwood Pass, AB Highwood Ridge 

 

Mount Hogsback area, Chic 
Choc Mountains, QC 

Monte Blanche LaMontagne, Mont 
Lyell 

Mont Jaques Cartier area, 
Chic Choc Mountains, QC 

Mont Jaques Cartier Saddle, Mont 
de la Passe West, Mont de la Passe 
East 

Northern Quebec Kangiqsualujjuaq 

Eastern Quebec Blanc Sablon 

Quebec 
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vertical fall height, as long as the path had well defined starting and runout zones and a 

well defined extreme runout position. Specifically, damage to vegetation in the runout 

zone had to be discernable, or the path had to have a historical record of large avalanches. 

Practically, few slopes with vertical fall heights of much less than 100 m were found that 

met all of the criteria. 

          Paths were chosen that were reasonably accessible using a combination of vehicle 

and foot access. In many cases, road access to the sites was relatively good, usually 

requiring less than two hours approach on foot from a highway or secondary road. 

          Paths were chosen that had well defined starting zones and runout zones. In order to 

ensure accurate field surveys, it was critical that the top of the starting zone could be 

determined, and that the width of the starting zone could be estimated. Thus, short slopes 

with starting zones within densely forested terrain were not considered because it would 

be difficult to determine the location of the starting zone in these areas. The runout zone 

also had to be well defined so that the extreme avalanche position could be defined. In 

most cases, there was no historical data available for the extreme runout position at the 

study sites, so vegetation was used to estimate the extreme runout position and estimate 

return periods for smaller events in the path. Both channelized (confined) and unconfined 

paths were included in this study. Although avalanche behaviour and runout 

characteristics can differ significantly between confined and unconfined paths (Mears, 

1992, p. 6; Lied and Bakkehøi, 1980), including both in the study made comparisons of 

runout for these types of paths possible. 

          The final criterion was that the avalanche path did not run-up onto an adverse slope 

or runout into a water body such as a lake or river. The statistical models that have been 

developed for runout estimation are not applicable when the avalanche runs up onto an 

adverse slope. This is particularly important when applying α-β models, in which 

increasing runout onto an adverse slope will result in an decreasing α angle and shorter 

runout, whereas the model is based on decreasing α angles being associated with longer 

runout distances. Some dynamics models can be used for run-up problems (e.g. McClung 

and Mears, 1995), but it was decided to forego the added complication of run-up and seek 

sites that did not have this characteristic. Where avalanche paths runout onto water bodies 

such as lakes or rivers, the extreme runout position usually cannot be defined from 

35 



vegetation, typically requiring the use of historical records, geomorphological (e.g. Blikra 

and Saemundsson, 1998; Boucher et al., 1999) or paleoenvironmental methods (e.g. 

Caterino, 1998). Historical records were typically not available for short slopes in the 

study area, and the other methods are typically prohibitively expensive. Thus, these paths 

were excluded from this study. 

          Because of the difficulty of finding short slopes that meet all of the above criteria, 

when a suitable path was found it was usually surveyed and included in the dataset. By 

including sites in the dataset based primarily on the above criteria, biases in the dataset 

were reduced with respect to other criteria such as aspect, elevation, steepness, or other 

terrain factors. Although the sample is not truly a random sample, it is likely that these 

paths give a good representation of short slopes in their respective mountain ranges. 

 

3.3 Equipment 

          Field equipment used for this study included very simple, commonly used surveying 

equipment, including: a fibreglass measuring tape, clinometer, compass, altimeter, hip-

chain, pruning saw, and increment borer. This equipment is described below and is shown 

in Figure 3.2. 

          A 100 m fibreglass tape, commonly known as a tight-chain, was used to measure 

slope distance on the ground. The tape was graduated in 0.05 m increments, but was read 

to the nearest 0.5 m. Considering variations in ground cover and lateral deflections of the 

tape from the avalanche path centreline, the accuracy of the tape is considered to be 

approximately ± 2 m per 100 m, or 2 %. 

          A sighting clinometer (Suunto PM-5/360PC) was used to measure slope angles 

between points along the profile. The clinometer is graduated in 1° increments, and was 

read to the nearest 0.5°. The accuracy of the clinometer is considered to be ± 0.5°. 

          A magnetic compass (Silva Model 515 Ranger) was used to measure the orientation 

of the starting zone with respect to true north. This compass is graduated in 2° increments 

and was read to the nearest 1°. The accuracy of the compass is considered to be ± 1°, 

although the true aspect of the starting zone can vary significantly, especially when the 

starting zone is concave or convex across the slope. 

          An altimeter watch (Casio Pathfinder) was used to estimate elevations in the starting 
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zone, in addition to using topographic maps. The altimeter was also used as an 

independent check for the slope angles and distances obtained with the clinometer and 

fibreglass chain. The altimeter is graduated in 5 m intervals, and is considered to be 

accurate within 5 m (at best) when properly calibrated to a known elevation on the day of 

the survey. 

          A hip-chain (Fieldranger 6500) was usually used to measure the width of the starting 

zone in lieu of using the fibreglass tape. The hip-chain is used to measure distance from a 

point by tying a thin string to a fixed object such as a tree branch and automatically 

releasing string from a housing unit as one walks away from the object. A calibrated 

wheel mechanism located in the box measures the distance walked along the ground as a 

function of the amount of string released. The hip-chain is graduated in 0.1 m increments, 

and was read to the nearest 1 m. Because of stretch in the string and deflections from the 

line of measurement, the hip-chain is considered to be accurate to approximately ± 5 m 

per 100 m, or 5%. 
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Figure 3.2 Field equipment used for surveying avalanche paths 

Fibreglass tape 

 Increment borer 

Hip-chain 

Compass 

Clinometer 

Pruning saw 



          A pruning saw was used for vegetation analysis in the runout. The saw was either 

used to cut branches to date the age of the branch, or for sectioning small trees to provide 

the age of the tree and date specific impacts to the tree using tree-ring analysis (see 

Section 3.5). 

          An increment borer was used to obtain core samples from trees to date the age of 

trees and/or impacts from avalanches. An increment borer consists of a hollow, steel bore 

that is threaded at one end and has at the other end a cross-piece that provides leverage for 

screwing the borer into a tree. Once the bore is inserted into a tree, a steel extractor is 

inserted into the centre of the bore, a barbed end grabs onto the tree core near the centre of 

the tree, and the core is subsequently removed from the bore by removing the core 

extractor from the steel bore. 

          Other field equipment included standard field data recording materials (notebooks, 

pencils, camera, etc.) and safety equipment (radio, bear repellant spray, first aid, etc.). 

 

3.4 Survey procedures 

          All avalanche paths in the dataset were surveyed from the approximate top of the 

starting zone to the interpreted end of the extreme runout position in the runout zone. The 

paths were surveyed using a fibreglass chain and clinometer (Figure 3.2). Two surveying 

methods were used depending on the number of people in the survey. When two people 

were surveying the path, the slope was surveyed in sections, with each section 

representing a segment of approximately equal slope angle. The chain was extended 

between the two field workers to obtain the slope distance, and the average slope angle 

was obtained by one worker taking a clinometer reading at eye level on the other worker. 

Typically, measured segments varied between 10 m and 25 m in slope length, and there 

were typically between 10 and 25 segments per path. 

          When there was only one field worker, the fibreglass chain was extended down the 

slope to it’s full length of 100 m. The distance from the top of the starting zone was 

measured at each point corresponding to a notable change in slope angle. The slope angle 

was measured with the clinometer from these points in both the upward and downward 

slope directions by sighting on a feature of approximately equal height to the worker (e.g. 

a location on a tree or boulder), or by approximating a height equal to the surveyor’s 
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upslope and downslope of the surveyor. The second method does not give as accurate a 

slope angle reading as when there are two workers. However, the average slope angle for 

each segment was measured at both endpoints and averaged, giving reasonably good 

estimates (accuracy of approximately 1º). Additionally, elevation readings were made at 

each point using an altimeter, which provided a secondary check on the slope angle and 

distance readings using simple trigonometric functions. 

          The position of the extreme avalanche runout for each path was deduced from 

vegetation damage or historical records. Similar to earlier studies (e.g. McClung and 

Mears, 1991; McKittrick and Brown, 1993), the goal of the runout survey was to identify 

the location of the “100-year” return period event, commonly referred to as the “extreme” 

runout position. However, the true return period for the extreme runout likely represents 

return periods of 30 to 300 years, introducing unavoidable random variation in the data 

(McClung and Mears, 1991). The cores obtained using the increment borer or sections cut 

with a saw were used to date trees in the runout zone using common plant 

dendrochronology procedures (e.g. Burrows and Burrows, 1976). 

          In some cases, the frequency of avalanches with differing return periods was 

observed as a series of steps in the ages of vegetation, commonly referred to as trimlines. 

In these areas, younger trees were observed in the areas affected by more frequent 

avalanches, while older trees grew in areas affected by larger avalanches with longer 

return periods. Dating the mature timber at the edge of the extreme runout position gives 

an approximate lower limit for return periods in this area, while younger trees and specific 

types of tree damage in the runout zone allow one to determine the relative frequency of 

smaller avalanches in the path. 

 

3.5 Vegetative indicators of runout 

          Damage to trees and shrubs in avalanche paths are the result of the snow and 

entrained debris impacting the vegetation or from the associated wind blast which 

sometimes accompanies large avalanches (Hansen-Bristow and Birkeland, 1989) 

(Figure 3.3). The vegetation responds to these impacts in different ways and is sometimes 

completely destroyed. Types of vegetation disturbance that can be used to date the 

frequency or extent of avalanches include: variation in tree growth rings or types of 
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reaction wood, tilting, scarring, 

growth curvature or stem 

indentations, stem breakage, branch 

trimming or breakage, tree burial or 

root exposure, tree removal, and 

tree succession. All of these 

disturbances except for tree 

succession are evident on 

individual trees, while tree 

succession is an indication of the 

response of an ecosystem to 

avalanche impacts (Hansen-Bristow and Birkeland, 1989). Burrows and Burrows (1976) 

and Hansen-Bristow and Birkeland (1989) provide extensive reviews of procedures using 

evidence of vegetation impacts for dating avalanche events. The methods used for this 

study are summarized below. 

          Dendrochronology is the method whereby tree rings within the trunks of trees can be 

counted to determine the age of a tree as well as date climate or avalanche impact events. 

A set of dark and light bands or tree rings indicate one year of growth, with the light band 

representing the “earlywood” grown during the spring through fall, and the dark band 

representing the “latewood” grown through the end of the growing season (Hansen-

Bristow and Birkeland, 1989). These rings can be counted on a core or section to 

determine the age of a tree (Figure 3.4). 

Advanced methods of dendrochronology 

use tree rings to relate tree growth to 

changes in climate or other ecological 

conditions (e.g. fires, impacts, disease) 

and provide specific dates for these 

events. These advanced methods were 

not used in this study. 

          Downslope tilting can occur when 

a tree is impacted by an avalanche 
Figure 3.4 Tree rings in a sectioned tree 
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Figure 3.3 Vegetation damage caused by a large 
avalanche. Note large amounts of woody debris 
carried and deposited by the avalanche  

 



(Figure 3.5). In response to this tilting, the tree will usually undergo a curving process to 

re-orient the upper part of the tree in a vertical position. Reaction wood, a type of wood 

that grows in reaction to a disturbance, can be observed on the downslope side of the tree 

where the tree is curving to a vertical position. By counting rings above and below the 

point of curve, the date of an impact may be estimated. 

          Scarring occurs when debris entrained within a flowing avalanche (e.g. rocks, trees 

or wood debris) impacts a tree (Figure 3.6), subsequently removing some of the bark and 

possibly wood. Avalanche debris typically impacts the upslope side of the tree, but may 

also impact the side of the tree. Rockfall may result in similar scarring to that caused by 

avalanche impacts, and may be difficult to differentiate in the field. After a tree is 

impacted, the tree responds by eventually covering the scar over with wood or bark of a 

younger age than the surrounding wood or bark. Wood of different ages in scarred areas 

may be observed in the field, particularly in cross-section, and the age of the impact can 
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Figure 3.6 Large tree impacted by two 
smaller trees in avalanche flow showing 
flagging of lower branches (B. Jamieson 
photo) 

Figure 3.5 Tree that has responded to 
avalanche impact by growing upslope, up-
righting itself to the vertical (B. Jamieson 
photo) 



be dated by counting the annual growth rings 

from the location of the unaffected wood.  

         Flagging, also known as branch trimming, 

is common in parts of an avalanche path affected 

by dense flow, although powder avalanches and 

air blasts can inconsistently result in removal of 

branches (Figures 3.6 and 3.7). Typically, 

flagging will be evident on the upslope side of 

the tree, but may also be evident on the sides. 

Larger avalanches may also break the trunk of a 

tree or remove tree tops when the avalanche 

mass becomes airborne. Trees that survive 

breakage of branches or the trunk may continue 

to grow new sprouts which grow vertically 

upwards. The age of these sprouts can be dated 

either by core sections or by counting branch 

growth tiers, and the approximate date of the impact to the tree can be determined. There 

may be a lag time from when the damage occurred and growth initiated, and this needs to 

be accounted for when interpreting the age of a sprout. This lag time can be several years, 

depending on the growing conditions at the site. Flagging may also be used to 

approximate depth of flow for an avalanche, since the lower limit of the height of the 

undisturbed branches from the ground should relate to the depth of the dense, avalanche 

flow. 

          When trees are removed from an avalanche path, gradual succession of trees on the 

path will occur. Thus, there may be a younger age class of trees within the central part of 

the avalanche path and several different age classes of trees on the margins of the path. 

The boundaries between these age classes are known as trimlines (Figure 3.8). By 

determining the age of the oldest trees on the avalanche site, an approximate minimum 

time since a major avalanche can be deduced. Dating the trees in each trimline may 

provide an estimate of return periods for major avalanches in a path. 

          Accumulations of trees, branches and rocks in the runout zone may indicate the 

Figure 3.7 Flagging of tree branches 
at the edge of an avalanche path 
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Figure 3.9 Woody debris in avalanche runout zone 

Figure 3.8 Trimline between a mature forest and regenerating conifers 

Mature forest (age class/return period 
approximately 80-100 years) 

Immature conifers (age class/return 
period < 10-15 years) 

Trimline 

Figure 3.10 New tree growth growing vertically from broken tree 

Broken tree stem 

New tree sprout 
(approx. 5 years old) 
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extent of large avalanches (Figure 3.9). Although branches will decay in a short period of 

time, large trees will remain on the site for a long period of time, particularly cedar trees. 

Soil and rock deposits will also be visible on the site for long periods of time, typically 

until obscured by vegetation. New trees will often grow vertically from tree debris or 

broken tree stems (Figure 3.10), giving an approximate date since a major avalanche. 

Areas where trees are lying downslope in the same direction are also good indicators of 

avalanche activity. 

 

3.6 Description of data 

          In addition to the avalanche path survey data, various other data were collected to 

describe each avalanche path. These data categories are shown in Table 3.2. An example 

of the field notes for the Hector Ridge South path and a profile for the Schroeder Shoulder 

path are included in Appendix A and B, respectively. 

          Detailed descriptions of each of these data categories will be provided in the 

subsequent sections of this report as each is used in the analyses. The sections below will 

provide a summary of the data categories. 

          Each path was assigned a unique name and Path Identification (ID) number. Where 

a path had a known name, this was adopted for the path. Otherwise, a unique name was 

assigned based on the path’s geographic location. The Path ID number was assigned using 

a letter and number combination, whereby the letter designates the mountain range in 

which the path is located (i.e. R for Rockies, W for (West) Coast, C for Columbias, Q for 

Quebec and Chic Choc mountains) and the number identifies the order in which the paths 

were surveyed in each range. The date that each path was surveyed is also shown. 

          Survey data was collected in the form of slope angle and slope distance between 

points, as discussed in Section 3.4. These values were translated into an x-y coordinate 

system that will be discussed later in this thesis. 

          The measured alpha and beta angles were slope angles measured from the horizontal 

by sighting back to the top of the starting zone from the extreme runout position and the 

location where the slope angle first reaches 10º in the runout zone, respectively. For some 

paths, these angles were not recorded either because the surveyed path did not reach a 

slope angle of 10º or the top of the starting zone was not visible from the runout zone. 
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          Several measurements were made in the starting zone to obtain an average slope 

angle in the starting zone. This angle can have a large degree of variability depending on 

the configuration of the starting zone. 

          The starting zone aspect was measured in several locations in the central to top part 

of the starting zone to obtain an average value. Measurements were made using a 

magnetic compass adjusted for local declination. 

          The elevations of the top of the starting zone and the bottom of runout zone were 

measured using a calibrated altimeter and were compared to a topographic map for 

Table 3.2 Data collected for each avalanche path 

Data category Description 

Path ID Identification number for each path (e.g. R1 for path 1 in 
Rockies) 

Path name Descriptive name for each path, either pre-existing or assigned 

Date surveyed Date path was surveyed in field 

Survey data Survey data, including slope distance and angle between points 
for each segment 

Measured α-angle Angle measured from runout position to top of starting zone 

Measured β-angle Angle measured from 10º slope angle point on path to top of 
starting zone 

Starting zone data: 
• Average inclination 
• Aspect 
• Elevation 
• Average width 
• Topography 

 
Average slope angle measured in upper part of starting zone 
Aspect typically measured in the centre of the starting zone 
Elevation of the top of the starting zone 
Width of the upper part of the start zone 
Categorized topography (e.g. linear, convex, concave) 

Wind index Index relating the position of the starting zone to drifting snow 
potential based on a five-class system 

Bottom of runout zone 
elevation 

Elevation of extreme runout position in runout zone 

Surface roughness Surface roughness in avalanche path, measured in metres 

Degree of confinement Degree of confinement between track and runout zone (e.g. 
gully, unconfined) 

Runs out in forest Location of extreme runout position with respect to dense forest 

Additional information Any other pertinent information 
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accuracy. 

          The average width of the starting zone was measured at the top of the starting zone, 

and is an estimate of the maximum width of avalanche that could initiate within a 

particular avalanche path. The boundaries are typically defined by either a topographic 

feature (e.g. gully sidewall, rock band) or a vegetative feature (e.g. dense forest). 

          The topography of the starting zone was described qualitatively, and classified as 

one of several general categories. These categories include: linear (planar) slope; concave; 

convex; complex; and gully. More rigourous categorizations of the topography have been 

applied in other studies (e.g. McClung, 2001b) but it was decided that simpler categories 

would suffice for this study given the relatively small area of the starting zone for most of 

the surveyed paths 

          The snow supply available for each avalanche starting zone was described 

qualitatively in the field and then categorized according to the five-part Wind Index 

(Schaerer, 1977). This scale describes the access of the avalanche starting zone to drifting 

snow. These categories are summarized as (Schaerer, 1977): (1) starting zone completely 

sheltered from wind by a surrounding dense forest; (2) starting zone sheltered by an open 

forest or facing the direction of the prevailing wind; (3) starting zone an open slope with 

rolls or other irregularities where local drifts can form; (4) starting zone on the lee side of 

a sharp ridge; and (5) starting zone on the lee side of a wide, rounded ridge or next to a 

large open area where large amounts of snow can be moved by wind. 

          The ground surface roughness is an approximate measure of the height of 

irregularity in the ground surface, excluding vegetation. Features such as stumps and 

logging slash were included in surface roughness in areas where forest harvesting had 

occurred. Ground surface roughness was estimated in the field in metres, and classified in 

terms of the following three categories: (1) low ground surface roughness, with < 1 m 

relief; (2) moderate ground surface roughness, with 1-2 m relief; and (3) high ground 

surface roughness, with > 2 m relief (McClung, 2001b). 

          The degree of confinement defines the relative confinement of the path between the 

starting zone and the track. This is important since confined avalanche paths may create 

higher velocities than unconfined avalanche paths (Lied and Bakkehøi, 1980), although 

higher friction in confined paths may negate any such effect. The degree of confinement 
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was described qualitatively in the field and each path was included in one of four 

categories: (1) unconfined; (2) partially confined; (3) strongly confined; and (4) gully. 

          The variable termed “runs out in forest” describes whether or not it is believed that 

the extreme runout position is located within mature timber, downslope of any obvious 

trimlines, or is within open, treeless terrain. This can be important since it differentiates 

between paths where the avalanche flow comes to a stop in un-forested terrain primarily 

due to frictional forces at the base of the avalanche flow forces from those where the 

avalanche flow comes to a stop primarily because of frictional forces from impacts with 

mature trees. The affects of forests on avalanche runout distances is a complicated subject 

which is currently the focus of several other studies (e.g. McClung, 2001b; Bartelt and 

Stöckli, 2001; Weir, In Press 2002). The paths were included in one of two categories: (1) 

runs out in forest; and (2) does not run out in forest. 

 

3.7 Limitations and sources of error 

          It is inevitable that numerous sources of error were introduced into this study during 

the collection of data for the paths. Limitations and sources of error are discussed in this 

thesis where they are considered to have an important effect on the results. Some of the 

error sources in this study have been described in previous sections of Section 3, primarily 

with respect to errors introduced during the field survey (Section 3.3). Further discussion 

is provided below. 

          As discussed in Section 3.2, biases were introduced into this study when defining 

the criteria that each site had to meet for inclusion into the dataset. The sample of short 

slopes used in this study is not truly a random sample since each site had to meet criteria 

such as the vertical fall height of the path and reasonable vehicle and foot access, criteria 

that were constrained by geographical factors. Biases associated with factors such as 

aspect, elevation, steepness, vegetation type are assumed to be limited. This is due to the 

limited number of sites that were found to meet the basic criteria, so that when a suitable 

site was found it was usually included in the study regardless of the other factors. 

          The majority of measurement error in this study came during the field survey of 

each path. Rather simple surveying techniques were used during this study that introduced 

instrument errors into the data. The errors associated with each surveying instrument and 
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surveying techniques were discussed in Sections 3.3 and 3.4. The most important 

surveying errors are likely associated with distance measurements using the tight chain   

(i.e. 2 m per 100 m, or 2 %) and the clinometer which has an accuracy of ± 0.5°, which is 

negligable in the horizontal direction, but translates to an error of approximately 2 m per 

100 m, or 2 %, in the vertical direction. 

          The other important surveying error lies in determining the location of the extreme 

runout position, as discussed in Section 3.4. The choice of the “100-year” avalanche event 

as the “extreme” runout position, while somewhat arbitrary, has come to be accepted as 

the definition of “extreme runout”, particularily when applied for engineering purposes. 

Because of the difficulty in using vegetation to define the location of the 100-year 

avalanche event, the true return period of the extreme runouts may vary from 30 to 300 

years, but is probably more in the range of 30 to 100 years for the sites surveyed. Also, it 

is assumed that extreme runout positions for short slopes include only vegetation impacts 

from dense flow avalanches. It is possible that in some of the larger paths, impacts to 

vegetation may have also resulted from powder avalanches or air blasts associated with 

the dense flow. These impacts can exceed the location of the runout position of the dense 

flow. 

          Another limation may be that trees in some areas may only reach a maximum age on 

the order of 100 years while in other areas trees may not reach such an age due to 

environmental factors such as fires, insects or disease. For example, it may be difficult to 

determine the runout associated with a 100-year avalanche event in areas where trees only 

attain a maximum age of 50 years. 
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4. STATISTICAL RUNOUT MODELS 

 

However big floods get, there will always be a bigger one coming; 

so says one theory of extremes, and experience suggests it is true. 

 

President’s Water Resources Policy Commission, p. 141 

 

4.1 Introduction 

          Extreme snow avalanche runout distance is a function of both terrain and climatic 

variables. Some previous studies have shown that avalanche runout in certain mountain 

ranges depends strongly on terrain parameters, particularly the β angle. In Section 4.2, the 

variables used in this study are defined. Section 4.3 presents the statistical distribution and 

variability of terrain parameters collected for this study. Models are developed to estimate 

runout distance for short slopes using the runout ratio and multiple regression methods in 

Sections 4.4 and 4.5, respectively. The purpose of these models is to be able to estimate 

extreme runout distances for short slopes as a function of either the runout ratio, ∆x/Xβ, or 

the alpha angle, α. These models are compared in Section 4.6, and Section 4.7 provides a 

summary of Chapter 4. 

 

4.2 Variable definitions 

          As shown on Table 3.2, various categories of data were collected for the short slopes 

in the dataset. These data can be represented as 25 distinct terrain variables, including 3 

categorical variables, 2 ordinal variables and 20 variables with interval or ratio properties. 

The variables used in the following analyses are shown on Table 4.1. The naming 

conventions for variables are based on previous studies (e.g. Lied and Bakkehøi, 1980; 

Bakkehøi et al., 1983; McClung and Lied, 1987), but have been modified where 

considered appropriate for this study. Some key terrain variables were previously defined 

in Section 1.8, while the remainder are defined below and are shown graphically in 

Figure 4.1. 

          The delta angle, δ, is defined by sighting from the extreme runout position to the β 

point, with the angle measured from the horizontal. This variable is a measure of the 
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average slope angle in the runout zone. It may be noted in Table 4.1 that unusually low 

values of δ were obtained in several of the paths (e.g. Q0 = -49.4º using a β point at 10º). 

This can be explained by the fact that the location of the β point was found using fitted 

parabolas and, in several cases, the β point was located far downslope of the observed α 

point (the extreme runout position observed in the field). Thus, these paths are assigned 

negative values of δ, and these may be large if the β point was located far downslope of 

the α point. Similarily, very low values of ∆x (e.g. Q0 = -723 using a β point at 10º) can be 

observed in Table 4.1, and reflect the same reason as for unusually low values of δ. These 

observations illustrate that the choice of the β point at 10º may not be well suited to this 

dataset. As discussed later in this chapter, an alternate β point is proposed for where the 

slope first decreases to 24º in the path profile. 

          The runout ratio, ∆x/Xβ, is a dimensionless variable that relates horizontal distances 

∆x and Xβ to the reference slope angles α, β and δ (McClung and Mears, 1991): 
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Figure 4.1 Geometry of example avalanche path showing most terrain variables used in 
the analyses. x-y coordinate system is shown with origin at lower left of figure. 
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          The alpha to beta angle ratio, α/β, is a dimensionless ratio of the two reference 

angles, α and β. 

          The vertical path displacement, Hα, is the vertical distance measured from the top of 

the starting position to the extreme runout position. 

          The vertical displacement to the β point, Hβ, is the vertical distance measured from 

the top of the starting position to the β point. 

          The slope length of the path, S0, is defined as the distance measured in the field 

along the path segments from the top of the starting position to the extreme runout 

position. 

          The terrain profile for each avalanche path was represented by fitting the polynomial 

parabolic curve 

to the surveyed profile between the top of the starting position and the extreme runout 

position. The x-y coordinate system used for defining Equation 4.2 for each path is shown 

in Figure 4.1. This parabolic curve provided an excellent fit to the surveyed avalanche 

paths using regression techniques, with coefficients of determination, R2, greater than 0.98 

for every path in the dataset. The second derivative of the polynomial curve 

(Equation 4.2), y", has a value of 2a and indicates the radius of curvature of the path 

profile (Lied and Bakkehøi, 1980). 

          The vertical displacement to the bottom of the parabola, H0, is defined as the vertical 

distance measured from the top of the starting position to the lowest point on the fitted 

parabola (Equation 4.2), the location where the first derivative (slope) of the polynomial 

curve, y', is zero. 

          The variable H0y" is the product of H0 and y" which, according to Lied and 

Bakkehøi (1980), makes the path profile independent of the total vertical fall height, and 

thus serves as a dimensionless scale parameter. 

          The terrain profile variable, TP, is an ordinal variable that is related to the radius of 

curvature, y", but accounts for the very abrupt change in curvature associated with hockey-

stick profiles (Figure 4.2). A value of 1 represents a slope with a nearly linear transition 

from the track to the runout zone; a value of 2 represents a path with a concave parabolic 

shape and a relatively smooth transition from the track to the runout zone; and 3 represents 
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y=ax2+bx+c  (4.2)  



a path with a hockey-stick profile. A hockey-stick profile describes path profiles where 

there is an abrupt transition to a slope at or near 0º in the runout zone (Martinelli, 1986). 

This type of profile may be commonly found where a steep slope meets a gently sloping 

or flat alluvial plain in the valley bottom. An example of a path in the short slope dataset 

with a hockey-stick profile (Schroeder Shoulder) is included in Appendix B. Paths with 

hockey-stick profiles were common in this dataset, with 10 of the 48 (21 %) surveyed 

paths being classified as hockey-stick profiles. There were 8 (17 %) paths defined as linear 

(planar) and 30 (62 %) paths defined as concave parabolas. 

          Topography, T, is a categorical variable that describes the topography within the 

starting zone. There were 17 (35 %) starting zones classified as linear, 9 (19 %) classified 

as concave, 14 (29 %) classified as convex, 2 (4 %) classified as complex, and 6 (13 %) 

classified as gullies. Concavity and convexity are defined in the downslope direction. 

          The degree of confinement is a categorical variable that defines the relative 

confinement of the path between the starting zone and track. There were 27 (56 %) paths 

classified as unconfined, 16 (33 %) as partially confined, 1 (2 %) classified as confined, 

and 4 (9 %) classified as gullies. 

          The categorical variable “Runs out in forest” describes whether or not the extreme 

runout position was observed within a mature forest, downslope of any obvious trimlines, 

or was within open, relatively treeless terrain. Eleven (23 %) paths were classified as 

“runs out in forest” (1), and 37 (77 %) paths were classified as “does not run out in 

forest” (2). 
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(1) Linear (planar) (3) Hockey-stick profile 

Figure 4.2 Examples of terrain profile types used for defining the TP variable 

(2) Concave parabola 



4.3 Statistical distribution of variables 

          Descriptive statistics for the data are shown in Table 4.1, including the mean, 

standard deviation, median (Q2), lower (Q1) and upper (Q3) quartiles, minimum (Q0) and 

maximum (Q4) values. Table 4.1 includes two separate sets of statistics for variables that 

depend on the defined location of the β-point. Similar to previous studies, descriptive 

statistics are provided for a β point defined as the position where the slope angle in the 

avalanche path first decreases to 10°. For reasons that will be explained in Section 4.3, 

descriptive statistics are also provided for the paths with the β point located where the 

slope angle of the path first decreases to 24°. 

          A total of 48 avalanche paths were surveyed for this study, 46 of which are included 

in the following analyses. Two paths, Mont Blanche LaMontagne located in the Chic 

Choc Range of Quebec and Blowdown Creek located in the Coast Range of British 

Columbia, were rejected on the basis that the paths did not reach a slope angle of less than 

28° upslope of the interpreted location of the extreme runout position. The commonly 

accepted lower limit for dry snow avalanche initiation within the starting zone is between 

25° (McClung et al., 1993, p. 92) and 28° (Gubler et al., 1994). At these slope angles, 

large snow avalanches should either be accelerating or attaining a steady velocity, not 

decelerating. According to this definition, these two paths have extreme runout positions 

within their respective starting zones and were consequently rejected for further analysis 

and excluded from the descriptive statistics. McClung (2001a) would classify these paths 

as continuously steep paths with no β point in the runout zone, which fits one of his 

discussed limitations of empirical models. 

          The normality of the 21 variables (excluding four categorical variables) is assessed 

by comparing the distribution of data to the expected normal distribution using the 

Kolmogorov-Smirnov (K-S) and Lilliefors tests of normality (Table 4.2) (Neave and 

Worthington, 1988, pp. 100-101, 149-156). The hypothesis of normality is rejected at the 

1% level (p ≤ 0.01) for 12 of the 21 variables based on the Lilliefors test of normality. The 

remaining 9 variables can be considered normally distributed data, including: α, β, α/β, Hα, 

Xα, Xβ, ∆x/Xβ, S0, and H0y''. It is important to note that both α and ∆x/Xβ can be considered 

to be normally distributed variables since they are used as response variables in the 

models developed in Sections 4.4 and 4.5  
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4.4 Runout ratio method 

4.4.1 Introduction 

          The objective of the section is to develop empirical formulas to estimate the extreme 

runout position for avalanches within the four mountain ranges represented in this study. 

The hypothesis is presented that, similar to the findings of previous studies (e.g. McClung 

and Lied, 1987; McClung and Mears, 1991), a set of runout ratios from a mountain range 

conforms to an extreme value distribution, specifically a Gumbel distribution. It is further 

postulated that, because the terrain scale and climate effects between ranges may be 

relatively weak for a dataset comprising short slopes, a common model may be developed 

to represent all four mountain ranges and climatic effects assessed. 

          Section 4.4.2 describes the statistical methods used to develop models based on the 

runout ratio. Section 4.4.3 applies this method to develop one runout ratio model for data 

from all four mountain ranges. In Section 4.4.4, the runout ratio method is applied 

separately to the four different mountain ranges to compare the results with the combined 

range model. Length-scale effects are assessed in Section 4.4.5. Residual analyses are 

conducted for the proposed models in Section 4.4.6. Section 4.4.7 summarizes the results 

of the models developed in Section 4.4. 

 

4.4.2 Description of the runout ratio method 

          McClung and Lied (1987) showed that a Gumbel distribution in the form, 

provides a good model for extreme avalanche runout distances. In this model, the runout 

ratio, ∆x/Xβ, is the continuous random variable, u and b are the location and scale 

parameters, respectively, and P is the non-exceedance probability (i.e. 0 < P < 1). A 

chosen value for P represents the runout ratio for which P × 100 % of the values in the 

dataset will not exceed that given value. The above expression can be re-written as: 

where the term -ln(-ln(P)) is often called the reduced variate. By assigning appropriate 

non-exceedence values P for each runout ratio in the dataset based on their rank order, it is 

possible to solve for u and b using least squares linear regression techniques. 
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          In order to define non-exceedance values for each runout ratio, the commonly used 

procedure is to rank the runout ratios and use one of the various forms of plotting 

positions to define the values for P (Watt et al., 1989, p. 55). Runout ratios in the dataset 

are ranked in increasing order such that: 

where N is the number of paths in the dataset and 1 < i < N. 

          McClung and Mears (1991) provide an extensive review of plotting position 

equations commonly used for small datasets. Based on this review and subsequent studies, 

it is apparent that the choice of the plotting position equation is not of great importance 

except when the focus of attention is on the one or two highest points in the dataset (Watt 

et al., 1989, p. 53). For this analysis, Hazen plotting positions are used (McClung and 

Mears, 1991): 

          It should be noted here that in Section 4.3, the runout ratio, ∆x/Xβ, was shown to be 

normally distributed. Although analyses could be conducted treating the runout ratio as a 

normally distributed variable, the hypothesis that a Gumbel distribution provides a good 

fit to the runout ratio data will be explored in the following sections. This method is 

applied using methods similar to those developed for estimating runout distances in 

previous studies. 

 

4.4.3 Runout ratio model for combined mountain ranges 

          Figure 4.3 shows the runout ratio for the combined mountain ranges plotted as a 

function of the reduced variate, -ln(-ln(P)), using the conventional definition of the β point 

located where the slope angle first decreases to 10º along the path profile. The linear 

regression line fit to the 46 data points has a coefficient of determination of R2 = 0.88 and 

a standard error of SE = 0.094. Since the variables on both the horizontal and vertical axes 

are increasing functions of the runout ratio, a good fit of the regression line to the data is 

expected and only high R2 values (e.g. R2 > 0.95) indicate a good fit to a Gumbel 

distribution. While the central part of the line provides a reasonably good fit to the data, 

the higher and lower values of runout ratio are poorly fit by the regression line. This 
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would be expected considering that many of the paths did not reach slope angles of 10º in 

the runout zone. The regression line has similar characteristics to that developed by 

McKittrick and Brown (1993) for the mountains of southwest Montana, in that there 

appears to be a “flattening” of the data at higher values of the runout ratio and a 

“steepening” of the data at lower values of the runout ratio. This “flattening” of the data at 

the upper-right end of Figure 4.3 is known as a “heavy-tail” and indicates that the runout 

ratio increases only slightly for reduced variates approximately greater than three, which 

corresponds to a non-exceedance probability of 0.95. A Gumbel distribution would only 

provide a good fit to the data if the extreme (high P) values in the dataset fell on or near 

the regression line, indicating increasing runout at higher non-exceedance probabilities. 

          Although alternative distributions may be used for analyzing the data shown on 

Figure 4.3, it is the intention of this study to apply previously developed methods to the 

data. As an example, an Extreme Value Type II, or Frechet, distribution (Watt et al., 1989) 

provides a better fit to the data with runout ratios exceeding zero than the fit shown for a 

Gumbel distribution (Figure 4.3). Fitting such a distribution to the data would require a 

transformation, or shifting of the y-axis, to allow for the inclusion of all of the data (i.e. ln

[∆x/Xβ] is defined only for ∆x/Xβ, > 0). Also, a better fit of the data is obtained when the 
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Figure 4.3 Runout ratio fitted to an extreme value (Gumbel) probability distribution for 46 
avalanche paths in the combined mountain ranges. β point defined at 10º. 



data is censored at lower values of P, similar to the findings of McClung and Mears 

(1991) who censored their data at P = e-1. Censoring the data in this manner results in a 

less than ideal subset of data (n = 29) for the analyses. McClung and Mears (1991) also 

explored the use of log-normal distributions for their data but found the “extreme value 

distribution to be as good or better than other ones and consequently recommend its use 

for the least-squares procedure”. In keeping with existing methods for statistical runout 

modelling, subsequent analyses are conducted by exploring the use of alternate definitions 

of the β point and using existing statistical methods. 

          Based on the poor fit of the regression line to the data with the β point defined at 

10º, additional linear regressions were conducted by varying the β point definition from 

10º through 27º. McKittrick and Brown (1993) found that using a reference point of 18º 

provided a better fit to their data, which included mostly shorter slopes. Although they did 

not develop a physical basis for this definition, there is some basis for using a β point as 

high as 25º, since this is where large, dry avalanches begin a deceleration and compressive 

phase (McClung and Mears, 1995). Figure 4.4 shows the results of the fit of regression 

lines to the data for varying β points from 10º through 27º, and that the best fit of the data 

to a Gumbel distribution occurs when the β point is defined at 24º. Using this definition of 

the β-point, both the R2 is maximized at 0.98 and the standard error, SE, is minimized at 

0.080. 

          Figure 4.5 shows the runout ratio for the combined ranges plotted as a function of 

the reduced variate, -ln(-ln(P)) with the β point defined at 24º. The linear regression line 

fit to the 46 data points has a coefficient of determination, R2, of 0.98 and a standard error 

of 0.080. This is a large improvement over the model with the β point defined at 10º, and 

has a good fit to the data using rank order statistics. The resulting regression equation 

relating the runout ratio to the non-exceedence probability is: 

This regression equation (Equation 4.7) is hereafter referred to as the 4-Range model. 

 

4.4.4 Runout ratio model for individual mountain ranges 

          All previous work in the field of statistical avalanche runout estimation has had, as 

one of its underlying assumptions, that each region or mountain range constitutes a 
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Figure 4.5 Runout ratio fitted to an extreme value (Gumbel) probability distribution for 46 
avalanche paths in combined mountain ranges. β point defined at 24º. 
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separate population of extreme runout distances, and that each region must be analyzed 

separately (Mears, 1992, p. 26). The analyses in Section 4.4.3 show that a suitable model 

can be developed to represent short slopes in several mountain ranges. The four mountain 

ranges used in this study have very different climate characteristics, and represent all three 

of the basic snow climate regimes: Maritime, Continental and Intermountain (McClung 

and Schaerer, 1993, pp. 17-18). 

          Runout ratio models for individual ranges are developed in this section to determine 

the affect of the climate regime in the different mountain ranges on runout distance. By 

looking at individual mountain ranges, however, it must be noted that the sample size is 

generally not considered adequate for conducting statistical analyses within reasonable 

confidence intervals. From the central limit theorem (Kennedy and Neville, 1986, pp. 117-

121), if N ≥ 30, the normal approximation for the mean and variance of the runout ratio 

can be used with good precision even for an extreme value distribution. For the combined 

dataset, n = 46, so the normal approximation can be applied. The number of paths for the 

Coast, Columbia, Rocky Mountain and the Quebec mountain ranges are 15, 10, 15 and 6, 

respectively (Table 4.3). Thus, all the samples for individual ranges are well below the 

recommended sample size of N ≥ 30. While considering this limitation, the following 

analyses show the results from the development of runout ratio models for individual 

ranges, and illustrates the effect of different ranges on the combined model. 

          Table 4.3 shows the results of regression analyses for the four individual mountain 

ranges in the study, with the β point defined at 24º. For the Columbia, Rockies and 

Quebec mountain ranges, the fit of a Gumbel distribution to the data is poor 
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Mountain 
Range n 

Coefficient of 
determination, 

R2 

Standard 
error, 

SE  

Coast 15 0.98 0.072 

Columbia 10 0.90 0.141 

Rockies 15 0.80 0.230 

Quebec 6 0.89 0.286 

Table 4.3 Results of regression analyses for runout ratio for 
individual mountain ranges, β point defined at 24º 

  
 



(i.e. R2 ≤ 0.90) , especially when compared to the model for the combined ranges 

(R2 = 0.98, Figure 4.5). The Coast Range has a comparable fit to the 4-Range model, with 

a slightly lower standard error (Figure 4.6). However, having a third of the number of data 

points when compared to the 4-Range model shows that the fit of the 4-Range model must 

be considered a better model. The individual model for the Coast Range is promising and, 

with the addition of more data, could prove to be a useful model. The resulting location 

parameter, u, for the Coast Range is 0.562 and the scale parameter, b, is 0.423, both of 

which are very close to the values for the 4-Range model. The resulting regression 

equation for the Coast Range, hereafter called the Coast Range model, can be written as 

and has a coefficient of determination of 0.98 and a standard error of 0.072. 

          There are no obvious reasons why the Coast Range should give more consistent 

results than the other ranges. There probably is no less variation in climate regime within 

the Coast Range when compared to the other ranges. It may even be the case that there is 

more variation in climate regime considering that the sites included in the Coast Range 

include relatively maritime sites near the Pacific coast (e.g. Mt. Seymour, Brohm Ridge), 

sites within the dryer Cascade Range (Zum Peak, Zopkios Ridge), and arguably 

intermountain sites near Penticton (Apex Mountain) that were included in the Coast Range 
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Figure 4.6 Runout ratio fitted to an extreme value (Gumbel) probability distribution for 15 
avalanche paths in the Coast Mountain range. β point defined at 24º. 



primarily because they are closer to the Coast Range than to the other ranges. A strong 

argument could also be made for including these sites in the Columbia Mountains but, for 

this project, they are classified as part of the Coast Range. 

 

4.4.5 Length-scale effects for runout models 

          Similar to previous studies (e.g. McClung and Mears, 1991), the combined range 

dataset for short slopes exhibits a scale effect when the runout ratio is used to define 

runout distance. The Spearman rank correlation coefficients of Hβ and Xβ with the runout 

ratio, ∆x/Xβ, are both -0.55 (n = 46), which are highly significant (p < 10-4) for both of the 

scale parameters. This indicates that the scale of the paths has a significant effect on 

runout distances. The negative correlations with runout ratio show that proportionately 

longer runout distances are associated with the shorter paths in the dataset which is 

consistent with the findings of McClung and Mears (1991). 

          Previous studies have found that partitioning the data into subsets provides a way to 

assess the length-scale effects on the model. Both McClung and Lied (1987) and McClung 

and Mears (1991) found that slopes with a vertical drop of less than 350 m did not fit well 

into their dataset, and consequently trimmed these paths from their dataset. In this study, 

the majority of the slopes have vertical drops of less than 350 m and, by developing a 

model for this dataset, the scale effect between larger slopes and slopes less than 350 m 

high is likely being addressed. However, within this dataset, there is also a scale effect, 

and it is important to estimate an upper limit for which a “short slope” model may be most 

applicable. 

          With the β point defined at 24º and using the 4-Range dataset, a series of regression 

analyses were conducted to assess the fit of a Gumbel distribution to the data for slopes 

with a vertical fall height, Hα, of less than a range of maximum values. The results of these 

regression analyses (Figure 4.7) show that the best fit linear regression is found when the 

dataset is limited to slopes with a vertical fall height of less than 275 m. Using this limit, 

the coefficient of determination, R2, is maximized at 0.99 and the standard error is 

minimized at 0.063. This is an improvement in model fit over the 4-Range model 

developed in Section 4.4.3, with a 25 % reduction in the standard error. It should be noted, 

however, that this refined model is based on approximately 25 % fewer paths (n = 33) 
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compared to the 4-Range model for all the paths (n = 46). The preference for the minimum 

number of data points to exceed 30 (see Section 4.4.4) is achieved by this model and thus 

it can be considered to a statistically useful result. The data and linear regression line for 

this model are shown on Figure 4.8, and the resulting regression equation for slopes with a 

vertical fall height of less than 275 m, hereafter called the H275 model, is 

 

4.4.6 Residual analysis 

          The models developed in Sections 4.4.3 (4-Range model), 4.4.4 (Coast Range 

model) and 4.4.5 (H275 model) using the runout ratio method were accepted as potentially 

useful models based primarily on the resulting fit of estimated values to observed values 

in terms of the coefficient of determination and standard error. In this section, the 

statistical validity of these models is assessed using residual analyses. 

          A regression residual is the observed value of the dependent variable minus the 

predicted value (Mendenhall and Sincich, 1996, p. 378). In the following analyses, 

residuals for the runout ratio, ∆x/Xβ, are calculated by comparing the observed values, 

those calculated from the fitted parabolic curves and the observed runout positions, with 

65 

Maximum vertical drop in dataset (m)

C
oe

ff
ic

ie
nt

 o
f d

et
er

m
in

at
io

n,
 R

2

St
an

da
rd

 e
rr

or
, S

E

0.00

0.05

0.10

0.15

0.20

0.90

0.92

0.94

0.96

0.98

1.00

100 200 300 400 500 600

R2

SE

Figure 4.7 Plot of coefficient of determination, R2, and standard error, SE, for regression 
lines fitting an extreme value (Gumbel) distribution to the data for variable maximum 
vertical fall height, Hα definition 

(4.9) ))ln(ln(0.4510.534)/( β PXx P −−=∆



the runout ratios estimated by the models. 

          Plots of the standard residuals for the three models are shown on Figures 4.9, 4.10 

and 4.11. The abscissa represents the number of standard deviations of the residuals about 

the mean. By comparing these plots to the expected normal distributions, none of the three 

figures show obvious non-normality. To assess the normality of these residuals, the 

distributions are compared to the expected normal distributions using the Kolmogorov-

Smirnov (K-S) and Lilliefors tests of normality (Neave and Worthington, 1988, pp. 149-

159; 100-103). The results of this comparison are shown on Table 4.4. The hypothesis of 

normality was not rejected for the K-S test for all three models, and was rejected for the 

Lilliefors test at the 1% significance level only for the H275 model. Regression is robust 
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Model 
K-S Lilliefors 

d p p 

4-Range, n = 46 0.119 > 0.20 < 0.10 

Coast Range, n = 15 0.161 > 0.20 > 0.20 

H275, n = 33 0.180 > 0.20 < 0.01 

Table 4.4 Normality tests for residuals for runout ratio 
models 
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Figure 4.9 Distribution of standard residuals, 4-Range model, n = 46 
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Figure 4.10 Distribution of standard residuals, Coast Range model, n = 15 
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Figure 4.11 Distribution of standard residuals, H275 model, n = 33 
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with respect to non-normal residuals (Mendenhall and Sincich, 1996, p. 412), and 

consequently, these three models can be considered to have normal or near-normal 

distributions of the residuals. 

          It is common practice to define statistical outliers as observations with residuals that 

are greater than approximately three standard deviations from zero (Mendenhall and 

Sincich, 1996, p. 414). These outliers are often removed from the model dataset in order to 

improve the model fit using regression techniques. Examination of Figures 4.9 through 

4.11 show that the 4-Range (n = 46) model has one outlier with a residual greater than 

three standard deviations from the mean. Another datapoint has a value of approximately 

2.5 standard deviations from the mean. These two points correspond to the Brohm Ridge 

path in the Coast Range and the Harvey Bowl path in the Rockies, respectively. 

          It is important to understand why these two points may be considered outliers, and 

that these outliers may belong to populations different from other paths in the dataset 

(Mears, 1992, p. 25). Examination of the statistical distribution of the data shows that the 

Brohm Ridge and Harvey Bowl paths have α angles of 18.8º and 19.8º, respectively, 

which are significantly lower than the mean value of 26.5º, but within typical ranges for 

extreme avalanches observed in other studies (e.g. Lied and Bakkehøi, 1980; Martinelli, 

1986; Nixon and McClung, 1993; Jóhannesson, 1998). One similarity between these two 

paths is that they reached relatively gently sloping areas of 10º, and continued past these 

areas onto slightly steeper slopes below and within partly confined stream channels. By 

concentrating the avalanche flow within a channel in the runout zone, it is possible that 

greater runout distances were achieved when compared to an open slope where avalanche 

material would disperse (Mears, 1984). McClung (2001a, p. 1262) also points out that 

“sometimes paths are highly confined in the runout zone resulting in unusually long 

running distances on slopes at or below 10º”. 

          While it is tempting to reject these two paths based on the above argument, the 

purpose of these models is to estimate extreme runout distances. Consequently, one needs 

to be cautious about rejecting long-running avalanche paths as this may result in a model 

that underestimates runout distances for the tail events on a Gumbel distribution 

(Figure 1.10), which is the area of interest for engineering and planning purposes. Doing 

so may result in a model that is less conservative for the most extreme avalanches within 
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the dataset. For this reason, these two outlier paths are left in the dataset and analyses. 

          The assumption of constant variance about zero can be tested by examining scatter 

plots of residual values for random scatter about zero. The plots shown in Figures 4.12, 

4.13 and 4.14 show random scatter of data around zero for the Coast Range and the H275 

models, which satisfies the assumption of constant variance. There are linear trends 

discernable for runout ratios between 0 and 0.8 in Figures 4.12 and 4.13 In this range of 

runout ratios, the models make a transition from under-estimating to over-estimating the 

runout ratio, but the residuals still scatter about zero. This trend, known as serial 

correlation or residual correlation (Mendenhall and Sincich, 1996, pp. 350, 430), is most 

important when data are in a time series, but may also be relevant in this case because the 

data have been ranked. 

          The Durbin-Watson test (Mendenhall and Sincich, 1996, p. 430) is used to test for 

the presence of residual correlation. Applying this test to the three models, only the H275 

model has a Durban-Watson d-statistic of 2.0, which implies the residuals are not 

correlated with the runout ratio. The 4-Range model has a d-statistic of 1.23 and the Coast 

Range model has a value of 0.61 implying that these residuals are positively correlated. A 

positive correlation of residuals with the runout ratio implies that larger runout estimate 

errors are associated with higher runout ratios, or those paths with relatively longer runout 

distances. Thus, larger errors are associated with the paths in the dataset with the most 

extreme runout distances and, conversely, smaller errors are associated with the paths in 

the dataset with less extreme runout distances. 

 

4.4.7 Summary of models developed using runout ratio methods 

          Several models were developed in the preceding sections using the runout ratio 

method. After analysis of the residuals, it is possible to summarize and propose uses and 

limitations for these models. Table 4.5 shows a summary of the regressions of the runout 

ratio on non-exceedance probability, P, and gives values of b and u for each model. The 4-

Range model includes the greatest number of data and therefore best represents runout 

ratios for short slopes in Canada. The coefficient of determination for the 4-Range model 

is comparable to that of the other models, while the standard error is slightly higher. While 

the H275 model showed randomly distributed residuals and no serial correlation among 
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Figure 4.12 Scatter of residuals, 4-Range model, n = 46 
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Figure 4.13 Scatter of residuals, Coast Range model, n = 15 
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Figure 4.14 Scatter of residuals, H275 model, n = 33 
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the residuals, the 4-Range model displayed serial correlation in the middle range of data. 

          A comparison of the estimated and observed values for the 4-Range and Coast 

Range models shows that there is an average of 0.4 % difference between the estimated 

and observed values, which is an inconsequential amount when compared to the potential 

errors introduced in data field measurements. Field measurement errors were estimated to 

be approximately 2 % (Sections 3.3 and 3.7), which is an order of magnitude higher than 

the average residual error of 0.4 %. Based on this, the residual errors in the models can be 

overlooked and the 4-Range model is the preferred model because it incorporates the 

highest number of paths for model development. This model may applied with the 

stipulation that it may be best suited to avalanche paths with vertical fall heights, Hα, of 

less than 275 m. 

          In developing the 4-Range model, two paths with relatively long runout distances 

were noted, having runout ratio residuals greater than 2.5 standard deviations from the 

mean. While using conventional statistical techniques these could be excluded from 

analyses as outliers, but with extreme value statistics one wishes to include extreme data 

in the dataset. These “extreme” points are actually the more important data in the sample, 

while paths with lower runout ratios are sometimes censored from the dataset (e.g. 

McClung and Mears, 1991). Thus, these two paths were included in the analyses. Both of 

these paths have partially channelized runout zones which may contribute to longer runout 

distances (McClung, 2001a). Therefore, it should be pointed out that one of the limitations 

of this model is that it may not apply well to avalanche paths with confined or partly 

confined runout zones. 

          Although the results of the regression for the Coast Range (Equation 4.8) appear to 

be good, this regression is based on 15 avalanche paths, and therefore the utility of this 
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Model n R2 SE u b 

4-Range 46 0.98 0.080 0.494 0.441 

Coast Range 15 0.98 0.072 0.562 0.423 

H275 33 0.99 0.063 0.534 0.451 

Table 4.5 Extreme value scale and location parameters (b, u) for 
the three proposed runout ratio models 

  



model is limited at present. Collection of additional data for this model could result in a 

model well suited to paths in the Coast Range. 

          It was demonstrated in Section 4.4.3 that a β point located where the slope first 

reaches 10º is not a suitable reference point for a dataset comprising short slopes. 

Previously, McKittrick and Brown (1993) showed that a β point located where the slope 

first reaches 18º was better suited to a dataset of paths in southwest Montana. In this 

study, it has been shown that the location where the slope first decreases to 24º is a more 

appropriate location for the β point for short slopes within Canada, and that there may be 

some physical basis behind choosing the β point at this location (McClung and Mears, 

1995; Salm et al., 1990). Because the β point has been redefined in this study to the 

location where the slope first reaches 24º, there is little point in trying to compare the scale 

and location parameters from these models to the parameters from previously developed 

models. 

 

4.5 Multiple regression method 

4.5.1 Introduction 

          In this section, least squares linear regression techniques are used to relate the 

dependent (response) variable, α, to various independent (predictor) terrain variables. The 

predictor variables must satisfy the condition of independence from α. The regression 

model to be developed has the general form 

that is used to describe a linear relationship between one dependent variable α and k 

independent random variables x1, x2,…, xk. The term βi determines the contribution of the 

independent variable xi, and is not to be confused with the β angle. The term ε represents 

the random error component of the model that makes the model probabilistic rather than 

deterministic. This error should satisfy two basic assumptions: it has a normal probability 

distribution with a mean equal to zero and a variance equal to the square of the population 

standard deviation, σ2; and the random errors are probabilistically independent 

(Mendenhall and Sincich, 1996, p. 175). Multiple regression involves fitting a general 

linear model to the dataset by estimating the coefficients βi that appear in the model. The 

coefficients are chosen to minimize the error sum of squares (the differences between the 
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α = β0 + β1x1 + β2x2 + …+ βkxk + ε   (4.10) 



observed αi and estimated αi). This approach of using multiple regression to estimate α 

using terrain parameters is similar to the methods of Bovis and Mears (1976) and Lied and 

Bakkehøi (1980). 

          It was shown on Table 4.2 that the runout ratio, ∆x/Xβ, can be considered a normally 

distributed variable, in addition to fitting an extreme value distribution. While multiple 

regression methods could also be used to estimate the runout ratio based on the normality 

of this variable, the intention of this project is to use existing methods for statistical runout 

modelling. Thus, multiple regression methods are only used to develop a model to 

estimate α, not the runout ratio. 

 

4.5.2 Initial regression model 

          Possible predictor variables for α were chosen from the 25 distinct terrain variables 

shown in Table 4.1 by including only those variables that are not a function of the α angle. 

Ordinal variables were included since these may be utilized in linear regression models, 

provided the regression residuals are normally distributed. In order to optimize model 

construction, predictor variables that are significantly correlated with the predictor 

variable, α, were selected for model development. 

          Spearman rank correlations between the predictor variables and α are shown in 

Table 4.6. All calculations in Table 4.6 and subsequent analyses in this thesis are based on 

the β point defined where the slope first decreases to 24º. Significant variables (p ≤ 0.05) 

are highlighted, and near-significant correlations (p ≈ 0.05) are shown in italics. Six of the 

variables are significant at the 0.05 level and these are used for model development. Other 

predictor variables that showed correlations of borderline significance with α were the 

Starting zone inclination, θ, and the Terrain Profile, TP. A total of eight predictor variables 

were used to develop the regression model, including the two near-significant variables. 

Backward elimination multiple regression methods (Mendenhall and Sincich, 1996, 

p. 247) were used with these eight predictor variables to obtain the best fit of the estimated 

values of α to the observed values. 

          A plot of the estimated against the observed data in the early part of the analyses 

showed one significant outlier, Mount Seymour, which had a standard residual in excess 

of three standard deviations from the mean. This path has a very large vertical drop to the 
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alpha point (Hα = 593 m) far greater than Hα for other paths in the dataset (average 

Hα = 224 m). Excluding this outlier from the analysis results in a greatly improved fit of 

the regression to the data. 

          After removal of this outlier, variables were systematically removed from the 

regression model equation (backward elimination) when they were found to have a 

minimal effect on the model (i.e. variable F-values were less than a specified threshold at 

each step in the regression). F-values (Table 4.7) were computed at each step in the 

regression to help facilitate removal of variables from the regression equation. Using a 

threshold F value of 3.1 (1 % significance level, υ1 = 8, υ2 = 36; Mendenhall and Sincich, 
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Table 4.6 Spearman rank correlations between the response variable, α, and predictor 
variables. β point defined at 24º 

Variable n R p1 
Beta angle, β (º) 46 0.482 7.00 x 10-4 
Vertical height to β point, Hβ (m) 46 0.610 6.67 x 10-6 
Horizontal reach to β point, Xβ (m) 46 0.568 3.81 x 10-5 
Vertical height to low point on parabola, H0 (m) 46 0.651 9.50 x 10-7 
Second derivative of the slope function, y'' (m-1) 46 -0.169 0.262 
Scale parameter for path profile, H0y'' 46 0.684 1.56 x 10-7 
Starting zone inclination,θ (º) 46 0.260 0.081 
Starting zone aspect, Aspect (º) 46 -0.081 0.591 
Starting zone elevation, SZ Elev (m) 46 0.086 0.571 
Runout zone elevation, RZ Elev (m) 46 0.025 0.868 
Surface roughness, SR (m) 46 0.067 0.659 
Wind Index, WI (ordinal data) 46 -0.237 0.112 
Width of starting zone, W (m) 46 -0.293 0.048 
Terrain Profile, TP (ordinal data) 46 -0.276 0.063 
1Rows for which p ≤ 0.05 are marked in bold. Rows for which p ≤ 0.10 italicized 

Table 4.7 Eight predictor variables used in multiple regression 
analyses and corresponding backwards elimination F values 

Variable F to remove1 
Beta angle, β (º) 0.902 
Vertical height to β point, Hβ (m) 0.288 
Horizontal reach to β point, Xβ (m) 3.433 
Vertical height to low point on parabola, H0 (m) 11.759 
Scale parameter for path profile, H0y'' 31.800 
Starting zone inclination,θ (º) 2.472 
Width of starting zone, W (m) 0.785 
Terrain Profile, TP (ordinal data) 6.442 
1 Rows for which F ≥ 3.1 (1% significance level) are in bold 

  



1996, p. 235, 821), all variables but H0y", H0, TP and Xβ were eliminated from the 

regression equation. Additional analyses showed that Xβ could also be removed from the 

regression equation with minimal effect on the results. Thus, Xβ was removed and the 

remaining three predictor variables for α were H0y'', TP and H0. Removal of any of these 

three variables had a large effect on the model, with R2 values going from 0.79 with all 

three predictor variables to 0.72 or less when any one of the three variables were removed. 

The resulting regression equation is 

This model has an adjusted R2 of 0.79, a standard error of 1.9º and utilizes 45 of the 

avalanche paths for model development. It can be observed that all three predictor 

variables are topographic parameters derived from the slope profile (Figure 4.1) and that 

all three are statistically significant (Table 4.8) in the regression equation. A summary of 

the results of regression, including the standard error and significance levels for each 

predictor variable is shown in Table 4.8. 

 

4.5.3 Simplified regression model 

          As in previous studies, the goal is a simple regression equation for estimating α with 

reasonable accuracy that uses a limited number of variables. Previous studies (e.g. 

McClung and Lied, 1987; McClung and Mears, 1991) found that predictor variables other 

than β were not statistically significant in regression analyses of slopes mostly over 300 m 

in vertical fall height. Results in Section 4.5.2 showed that, although the β angle is 

significantly correlated with α, it is not one of the most useful predictors for multiple 

regression for this dataset of short slopes. For this dataset, H0y'' is the most statistically 
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Adjusted R2 = 0.79, 
SE = 1.9º, p < 10-4 

Coefficient 
βi 

Standard 
error of βi 

p 

Intercept 22.42 º 1.38 º 1.9 x 10-19 

H0y'' 22.11 º 2.63 º 1.9 x 10-10 

TP -2.60 º 0.59 º 8.1 x10-5 

H0 0.01 º·m-1 0.003 º·m-1 5.0 x10-4 

Table 4.8 Results of multiple regression analysis for α   

00 0.01TP2.6022.1122.42α̂ HyH +−′′+= (4.11) 



significant variable in the regression equation, followed by TP and then H0 (Table 4.8). 

Removing TP from the regression analysis results in an adjusted R2 of 0.69 and a standard 

error of 2.3º. Removing H0 from the regression analysis results in an adjusted R2 of 0.72 

and a standard error of 2.2º. Removal of both TP and H0 results in an adjusted R2 of 0.46 

and a standard error of 3.1º. It can thus be observed that the regression may best be 

simplified by removing H0 from the regression, and the resulting regression equation is 

with an adjusted R2 of 0.72 and a standard error of 2.2º. However, simplifying the 

equation to this form may not be very beneficial, considering that the variable H0 must 

also be calculated as part of the variable H0y''. The regression equation developed in 

Section 4.5.2 (Equation 4.11) is preferred since it has a higher adjusted R2 and lower 

standard error than Equation 4.12. 

 

4.5.4 Residual analysis 

          The regression model developed in Section 4.5.2 was accepted as a promising model 

based primarily on the resulting fit of the estimated values to observed values in terms of 

the adjusted R2 and standard error values. Before acceptance of this regression model, the 

residuals of regression are analysed, as in Section 4.4.6, to determine the statistical 

validity of the model. 

          The assumption of constant variance is tested by examining a plot of standard 

residuals for random scatter about zero. Visual inspection of Figure 4.15 shows that the 

assumption of constant variance is satisfied. 

          The distribution of the standard residuals is shown in Figure 4.16 along with the 

expected normal distribution. The K-S test for normality has a d value of 0.09 (p > 0.20) 

which, along with the Lilliefors test (p > 0.20), show that the hypothesis of normality of 

the residuals is not rejected. Thus, the assumption of normality of the residuals about a 

mean of zero is satisfied. 

          The third assumption to be tested is that the residuals are not serially correlated. The 

Durban-Watson statistic has a value of 2.0, indicating that the residuals are not correlated. 

          Since the above three assumptions for multiple regression have been satisfied, it is 

concluded that the regression equation developed for estimating α (Equation 4.11) is 
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statistically valid. 

          These three basic assumptions were also tested for the simplified model presented in 

Section 4.5.3 (Equation 4.12) using similar methods. The K-S test for normality has a d 

value of 0.14 (p > 0.20), while the Lilliefors test has a significance value of p < 0.05. 

Thus, the hypothesis of normality of the residuals is not rejected based on the K-S test but 
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Figure 4.16 Distribution of residuals, multiple regression model (Equation 4.11) 
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Figure 4.15 Scatter of residuals, multiple regression model (Equation 4.11) 



is rejected based on the Lilliefors test. The Durban-Watson statistic has a value of 2.0, 

indicating that the residuals are not correlated for the simplified model (Equation 4.12). 

          Analyses were conducted to assess if the variables used to develop the models 

(Equation 4.11 and 4.12) are significantly cross-correlated. When two or more 

independent variables in the regression are correlated, a condition called multicollinearity 

exists (Mendenhall and Sincich, 1996, p. 355-357). Highly significant correlations among 

the predictors can lead to problems with multiple regression, including increasing the 

likelihood of rounding errors in the calculation of βi coefficients, and obtaining confusing 

and misleading results. Based on Spearman rank correlations of the three predictor 

variables with each other (Table 4.9), all three variables used in the analyses, H0y'', TP and 

H0 are significantly cross-correlated with each other at the 5 % significance level  

(p < 0.05) but are not highly significant at the 1 % significance level (p < 0.01). Problems 

may arise in regression analysis when serious multicollinearity is present (Mendenhall and 

Sincich, 1996, p. 355), which is not the case with these variables. 

 

4.5.5 Effects of different mountain ranges on regression models 

          Figure 4.17 shows the standard residuals from the analysis in Section 4.5.2 

(Equation 4.11) for estimating the α angle. Distinct symbols are marked for each mountain 

range. All values are within three standard deviations of zero, indicating the absence of 

any statistical outliers, and the majority of residuals fall within two standard deviations of 

zero. All of the residuals for the Coast mountain range are within approximately one 

standard deviation of zero indicating that the Coast range accounts for the least amount of 
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Table 4.9 Spearman rank correlations of predictor variables 
to test for multicollinearity in regression models 

Variables Spearman R p 

H0y''and TP 0.298 0.0467 

H0y'' and H0 0.329 0.0275 

TP and H0 -0.365 0.0136 

n 

45 

45 

45 

  



error in the model. The other three mountain ranges, the Rockies, Columbias and Quebec 

mountains, have residuals mostly less than two standard deviations. This is consistent with 

the results of Section 4.4.4, in which the Coast mountain range was found to have more 

consistent results than the other mountain ranges. This also implies that, with additional 

data points (i.e. n ≥ 30), a suitable regression model could be developed for the individual 

Coast Range, while the advantage of such an approach for short slopes in the other three 

ranges is not apparent in this dataset 

 

4.5.6 Scale effects on regression models 

          The standard residuals in the regression model are plotted versus the vertical fall 

height, Hα, in Figure 4.18. The standard residuals are randomly scattered about zero for all 

paths. A similar result for standard residuals plotted versus the total horizontal distance to 

the α point, Xα, is shown on Figure 4.19. Since there is no discernable scale effect in the 

regression model developed for estimating α, the model can be used for all vertical fall 

heights in the dataset (51 m to 440 m) and all horizontal lengths in the dataset (124 m to 

852 m), excluding the Mount Seymour outlier path. As discussed in Section 4.4.5, the 

models developed using the runout ratio method may be best suited to the smaller slopes 

in the dataset (e.g. Hα ≤ 275 m), while scale effects are less apparent in the multiple 
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regression model. 

 

4.5.7 Proposed physical effects of independent variables 

          The three independent variables used in the regression model, H0y'', H0 and TP are 

topographic parameters connected to the terrain profile for each path (Figures 4.1 and 4.2). 
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While all three variables are statistically important parts of the regression model, the 

physical effect of each variable runout should be discussed to evaluate their individual 

contribution to the model. 

          The variable H0y'' was found to be statistically significant in studies for other 

mountain ranges (Lied and Bakkehøi, 1980; McClung and Lied, 1987; Lied et al., 1995; 

Jóhannesson, 1998). In all but the study by Lied et al. (1995), H0y'' was subsequently left 

out of the regression equation for α since it did not substantially improve the model. 

          Lied and Bakkehøi (1980) argue that scaling the radius of curvature, y'', with H0 

makes the profile independent of the vertical fall height of the path. Their reasoning is that 

an avalanche path with a small vertical fall height should have a similar α to one with a 

large vertical fall height for a path with a similar shape (Lied and Bakkehøi, 1980). 

          H0y'' is strongly and positively correlated with α (Table 4.6), which means that 

higher values of H0y'' are associated with higher values of α, and consequently shorter 

runout distances.). Spearman rank correlations between H0y'' and the scale variables Xβ 

(R = 0.293, p = 0.051) and Hβ (R = 0.408, p = 0.0054) show that, contrary to the 

discussion of Lied and Bakkehøi (1980), the variable H0y'' is strongly scale dependent for 

the short slope dataset, even though it is a dimensionless variable. 

          H0 is also strongly and positively correlated with α, while y'' is not significantly 

correlated with α (Table 4.6). Interpretation of these correlations shows that paths with 

higher values of y'' (highly curved) and higher values of H0 (taller slopes) are associated 

with higher values of α, or relatively shorter runout distances. Conversely, low curvature 

(nearly planar), short paths are associated with lower values of α, or relatively longer 

runout distances. 

          In terms of avalanche dynamics, highly curved avalanche paths have higher energy 

losses associated slope angles that decrease markedly down the path and consequently 

reduced runout potential. The lowest amount of energy loss would be associated with a 

perfectly linear slope, for which y" ≈ 0. 

          The finding that H0 is also strongly and positively correlated with α agrees with one 

of the original hypothesis of this study that shorter slopes have relatively longer runout 

distances than taller slopes in this dataset. While shorter slopes have relatively longer 

runout distances, as the strong and positive correlation with α suggests, there is also 
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curvature effect in the model with respect to y''. Thus, H0y'' is a more important predictor 

variable for α than either y'' or H0 alone. 

          The variable TP, the terrain profile, is moderately and negatively correlated with α, 

but is not significant at the p = 0.05 level. Recalling from Section 4.2, TP = 1 represents a 

slope with a nearly linear transition in slope angle from the track to the runout zone, 

TP = 2 represents a path with a concave parabolic shape, and TP = 3 represents a path 

with a hockey-stick profile (Figure 4.2). This variable is highly related to the radius of 

curvature, y", but accounts for the very abrupt change in slope associated with hockey-

stick profiles. Based on the negative correlation of TP with α, paths with higher values of 

TP (i.e. hockey-stick profiles) are correlated with lower values of α, and consequently 

longer runout distances. This finding agress with Martinelli (1986) who observed 

unusually long runout distances associated with short-track, hockey-stick profile paths. 

One possible physical interpretation for this phenomenon is that fast moving snow may 

become partly fluidized upon reaching an abrupt slope transition associated with paths 

with hockey stick profiles (Martinelli, 1986; K. Lied, personal communication, 2002). 

Thus, snow in these cases may flow greater distances due to the entrained air and reduced 

frictional forces past this transition location (Martinelli, 1986). Another explanation for 

this phenomenon is that there is a tendency for snow to be deposited at a sharp slope 

transition and for the remaining snow to overide the material trapped in the transition area 

(McClung and Mears, 1995). The material trapped at the transition may serve to reduce 

frictional forces at the transition, resulting in relatively longer runout distances. 

          An important point to note is that the TP variable may simply be compensating for 

the quadratic fit of the curves to the hockey-stick profiles. It may be the case in these paths 

that the beta points for the fitted curves should be located farther upslope than the beta 
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Table 4.10 Summary of multiple regression models 

n adjusted 
R2 SE 

Coefficient, βi 

Intercept H0y'' TP H0 

Initial model 
(Equation 4.11) 

45 0.79 1.9 º 22.42 º 22.11 º -2.60 º 0.01 º·m-1 

Simplified model 
(Equation 4.12) 

45 0.72 2.2 º 25.46 º 26.93 º -3.74 º n/a 

Model Model 
p 

< 10-5 

< 10-5 



point at the transition of the hockey stick. Thus, when terrain parameters are taken from 

parabolas fitted to path profiles, avalanches in paths with hockey-stick profiles run farther 

in relation to paths with other profiles. 

          From a practical perspective, higher values of TP (i.e. TP = 3 for hockey-sticks) are 

associated with lower values of α, as shown by the negative contribution of TP to the 

regression model (Table 4.10). Therefore, for conservative estimates of runout one would 

have a preference to choose higher vaules of TP in the model if unsure of which category 

of TP to apply to the path profile. 

          If sufficient data were available, separate models could possibly be developed for 

each terrain profile class, or at least separate models for paths defined as hockey-sticks 

and other paths. However, there were only 10 paths classified as hockey-sticks in this 

study, which is not a sufficient number of data to conduct multple regression analyses for 

paths with TP = 3. 

 

4.5.8 Summary of regression models 

          One avalanche runout model and a simplified version of this model were developed 

in the proceeding sections using multiple regression. The models were refined by 

excluding one outlier, and analyses of the residuals were performed. These models are 

summarized in Table 4.10 and below, and uses and limitations for the models are 

proposed. 

          The Initial model (Equation 4.11) has a slightly higher adjusted R2 and lower 

standard error than the Simplified model (Equation 4.12). Considering that the variable H0 

must be calculated as part of the variable H0y'', there is little reason to choose the 

simplified model over the initial model. Thus, the preferred regression equation relating α 

to terrain parameters is 

          A comparison of residuals for individual mountain ranges (Section 4.5.5) showed 

that the Coast Range contributes the least amount of error to the proposed model and, with 

additional data, a regression equation might be developed for the Coast Range 

independent of the other ranges. A review of the standard residuals versus the vertical 

drop to the α point, Hα, and the total horizontal distance to the α point, Xα, shows that there 
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is no discernable scale effect in the regression model developed for estimating α. This is in 

contrast to the models developed using the runout ratio method, in which there is a 

discernable scale effect in the dataset. 

          The physical effect of the three independent variables on the regression model was 

discussed to evaluate their individual contribution to the model. 

 

4.6 Comparison of runout ratio and multiple regression methods 

          In the previous sections, avalanche runout models were developed using two 

different methods: the runout ratio method and the multiple regression method. Both 

methods yield models that provide reasonably good fits to the sample of avalanche paths 

from this study. To determine which of the models provide better estimates of runout 

distances, models based on the two methods are quantitatively compared in this section. 

          The models developed using the multiple regression method measure runout in 

terms of α, while models developed using the runout ratio method measure runout in terms 

of the runout ratio, ∆x/Xβ . With measured values of the predictor variables Xβ and β, the 

runout can be estimated in terms of α and ∆x/Xβ for model comparison. Because the model 

coefficients in the regression method have been chosen to minimize the sum of squared 

residuals in α, a bias is introducted when comparing these models to the models developed 

using the runout ratio method in terms of α (Jóhannesson, 1998). Similarily, the 

coefficients in the runout ratio method have been chosen to minimize the sum of squared 

residuals in the runout ratio, ∆x/Xβ, so comparing models in terms of ∆x is biased toward 

the models developed using the runout ratio method. Thus, it is best to compare models in 

terms of both ∆x and α. The following model comparison follows the approach of 

McClung (2001a). 

          Models developed using the multiple regression method contain the assumption that 

runout distances, measured in terms of α, are approximately normally distributed. This has 

been shown to be a valid assuption for the proposed regression model in Section 4.5. For a 

given avalanche path with a constant value of β, α decreases as the non-exceedence 

probability, P, increases with runout distance (measured from the β point) in the runout 

zone (McClung, 2001a). A chosen non-exceedence value of P (0 < P < 1) defines the 

number of αP values for which P × 100 % of the values in the normal distribution will not 

84 



be less than the given value of αP (McClung and Mears, 1991). A fit of the data using 

multiple regression methods allows for the estimation of α as a function of the non-

exceedence probability, P, where the estimation interval for αP is defined as (Walpole and 

Myers, 1985, p. 371): 

where zP is the z-statistic representing standard deviations from the mean for a normal 

distribution, and the term SE (1 + x0´ A-1 x0)1/2 represents the standard deviation of the 

sampling distribution for the estimator αP using maxtrix operations, also called the 

standard error of estimation in many regression computer packages. The term x0' is called 

the condition vector where x0' = [1, x10, x20,…,xk0] for k predictor variables. A-1 is the 

inverse (k + 1) x (k + 1) matrix for the data used to build the regression model. The term  

zPSE (1 + x0´ A-1 x0)1/2 in Equation 4.13 provides a estimation interval for an individual αP 

given a non-exceedance probability, P. 

          The term 1+ x0´ A-1 x0 is complicated to calculate manually and is typically computed 

by computer packages using the regression model input data. Equation 4.13 can be 

simplified to  
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where CP is a correction factor shown graphically in Figure 4.20 for a given non-

exceedence probability, P, and SE is the standard error of regression of 1.9º. It can be 

observed in Figure 4.20 that the relationship between CP and P increases non-linearly for 

P > 0.85. 

 

          The relationship between αP and ∆xP can be expressed by the relationship 

(McClung, 2001a) where ∆xP and αP are the runout distance and α angle at a given value 

of P, and δ is the angle measured from the horizontal by sighting between the α and β 

points (Figure 4.1). Because Xβ is a constant value for an individual avalanche path, the 

runout distance can be expressed as  

The δ angle is determined analytically rather than statistically (McClung, 2001a). 

          The runout ratio method assumes that runout distances can be represented by a 

Gumbel distribution. This was shown to be a valid assumption in Section 4.4. For a given 

avalanche path, the runout ratio, ∆x/Xβ, increases as the non-exceedence probability 

increases with runout distance measured from β in the runout zone. A chosen non-

exceedence value of P (0 < P < 1) defines the number of ∆x/Xβ values for which 

P × 100 % of the values in the normal distribution will not exceed the given value of  

∆x/Xβ. The equation representing the runout ratio, ∆x/Xβ, as a function of the non-

exceedence probability, P, is (see Section 4.4.3): 

Because Xβ is a constant value for an individual avalanche path, Equation 4.10 can be re-

written in terms of the runout distance, ∆xP 

This term may be compared with the expression for the runout distance as a function of 

non-exceedance probability for the multiple regression method (Equation 4.16). 

          Table 4.11 shows a comparison of the models developed using the runout ratio and 

multiple regression methods for two avalanche paths chosen randomly for each mountain 
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Table 4.11 Comparison of runout distances and α angles for eight paths for the regression 
model αp = 22.42 + 22.11 H0y" - 2.60 TP + 0.01 H0 - CPSE (Equation 4.14) and the 4-
Range model (∆x/Xβ)P = 0.494 - 0.441 ln(-ln(P)) (Equation 4.7) (Table after Nixon and 
McClung, 1993) 

Avalanche 
Path 

Regression model 
estimate 

Runout ratio model 
estimate 

Observed 
value 1 

αp ∆xP (∆x/Xβ)p αp ∆xP α ∆x 

Wolverine 
Ridge 

 
 

0.99 
0.90 
0.80 
0.50 

21.1 
23.1 
23.8 
25.0 

289 
237 
221 
195 

2.426 
1.439 
1.124 
0.648 

13.2 
18.3 
20.9 
26.5 

642 
378 
294 
167 

23.9 217 

Shark 
Mountain 

 
 

0.99 
0.90 
0.80 
0.50 

22.1 
24.1 
24.9 
26.1 

292 
230 
208 
177 

2.426 
1.439 
1.124 
0.648 

11.5 
16.1 
18.4 
23.5 

957 
564 
439 
249 

29.8 96 

Apex Mountain 
East 

 
 

0.99 
0.90 
0.80 
0.50 

24.7 
26.7 
27.4 
28.7 

240 
191 
176 
150 

2.426 
1.439 
1.124 
0.648 

12.8 
17.9 
20.4 
25.8 

815 
480 
373 
212 

30.3 115 

Schroeder 
Shoulder 

 
 

0.99 
0.90 
0.80 
0.50 

24.6 
26.7 
27.4 
28.7 

202 
156 
141 
117 

2.426 
1.439 
1.124 
0.648 

12.0 
16.7 
19.2 
24.4 

801 
472 
367 
208 

30.1 48 

Brohm Ridge 
Col 

 
 

0.99 
0.90 
0.80 
0.50 

16.7 
18.7 
19.4 
20.6 

417 
347 
326 
292 

2.426 
1.439 
1.124 
0.648 

14.7 
20.4 
23.3 
29.2 

504 
279 
231 
131 

22.5 247 

Cornice Ridge 
North 

 
 

0.99 
0.90 
0.80 
0.50 

18.1 
20.1 
20.9 
22.1 

322 
267 
248 
222 

2.426 
1.439 
1.124 
0.648 

13.9 
19.3 
22.0 
27.7 

488 
288 
224 
127 

19.5 282 

Mont Jaques 
Cartier Saddle 

 
 

0.99 
0.90 
0.80 
0.50 

17.5 
19.5 
20.5 
21.5 

459 
381 
348 
317 

2.426 
1.439 
1.124 
0.648 

14.3 
19.8 
22.6 
28.4 

628 
370 
288 
163 

21.6 314 

Mont de la 
Passe West 

0.99 
0.90 
0.80 
0.50 

21.1 
23.2 
23.9 
25.2 

430 
352 
329 
289 

2.426 
1.439 
1.124 
0.648 

13.7 
19.0 
21.7 
27.4 

889 
524 
407 
231 

25.3 287 

1 Observed values of α and ∆x were estimated from vegetation damage during field 
studies, corresponding to return periods of 30 - 100 + years 

P 
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range, for a total of eight avalanche paths. In order to compare the models in an unbiased 

manner, values for both the runout distance, ∆xP, and the equivalent αP angle are 

presented. The results in Table 4.11 show that at higher values of P (0.90 and 0.99), the 

runout ratio method estimates longer runout distances than the regression method for most 

paths, with the exception of the Brohm Ridge and Mont Jaques Cartier Saddle paths at 

P = 0.90. This is consistent with the findings of Nixon and McClung (1993), and is 

explained by the fact that runout estimates based on the assumption that runout follows an 

extreme value distribution should be higher than estimates based on runout following a 

normal distribution. High non-exceedance probabilities (e.g. P = 0.90) are important in 

engineering applications such as land use planning, where one must account for avalanche 

events with longer return periods, and consequently higher non-exceedance probabilities. 

          Another important observation is that at very high values of P (P = 0.99), the runout 

ratio method estimates α values that appear to be unreasonably low (Table 4.11). A review 

of the literature (Lied and Bakkehøi, 1980; Mears, 1984; Martinelli, 1986; McClung and 

Mears, 1991; Nixon and McClung, 1993; Jóhannesson, 1998; Tremper, 2001, p. 70) 

shows that for most studies of avalanche runout, which include hundreds of avalanche 

paths, minimum observed α values are in the range of 14º to 20º. Exceptionally low values 

are in the range of 14º to 16º, with only one recorded α angle of 14º in the Colorado Rocky 

Mountains (Martinelli, 1986). The lowest observed α angle from the short slope dataset is 

18.8º. Table 4.11 shows that for P = 0.99, the runout ratio model estimates αP angles in the 

order of 12º to 15º. This implies that this model may be overly conservative at high non-

exceedence probabilities. The regression model estimates more realistic αP angles in the 

order of 17º to 24º for a non-exceedence probability of 0.99. 

          McClung (2001a) compared models developed using the runout ratio and regression 

methods and noted several important differences between the models, including: 

• The runout ratio method provides more conservative (longer runout distance) 

estimations for flat terrain in the runout zone (δ = 0º)  and the regression method is 

more conservative for sloping terrain (δ = 5º and δ = 10º) in the runout zone. 

• The runout ratio method has little dependence of the runout distance on runout zone 

steepness, while runout distance estimations using the regression method are strongly 

influenced by the runout zone steepness. 
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          The results of similar analyses to those of McClung (2001a) for the models 

developed in this study are shown in Table 4.12. For comparison, mean values from the 

data (Table 4.1) are assumed for the input variables (McClung, 2001a), including  

β = 32.8º, Xβ = 290 m, H0 = 216 m, H0y" = 0.332 and TP = 2. The slope angle in the 

runout zone, δ is varied from 0º to 15º, and four non-exceedance probabilities are used: 

0.5, 0.8, 0.9 and 0.99. The results in Table 4.12 indicate that there is a strong dependence 

of the runout distance on δ for any P value for the regression method, while the runout 

ratio method is independent of δ for a given P. This agrees with the findings of McClung 

(2001a). The runout distances estimated by the runout ratio method are comparable to 

values from the regression method for values around δ = 15º, which is also the mean value 

of δ for the dataset. McClung (2001a) found the runout distances to be comparable near 

δ = 5º, which is the mean value for their dataset. This result is not entirely unexpected 

considering that he defines the β point where the slope decreases to 10º, while the β point 

is defined in this study of short slopes where the slope first decreases to 24º. Thus, based 

on this modified definition of the β point, steeper slope angles beyond the β point 

(higher δ ) are expected for the short slope dataset. 

          Contrary to the findings of McClung (2001a) for taller slopes, however, both ∆x  and 
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Table 4.12 Runout distances calculated using the 
runout ratio and regression methods, as a function of 
the non-exceedance probability, P, and the slope 
steepness in runout zone, δ (After McClung, 2001a) 

Runout distance (m) 

P Method δ = 0º δ = 5º δ = 10º δ = 15º 

0.50 Runout ratio 188 188 188 188 

0.50 Regression 98 120 155 222 

0.80 Runout ratio 326 326 326 326 

0.80 Regression 120 148 195 291 

0.90 Runout ratio 417 417 417 417 

0.90 Regression 134 167 223 340 

0.99 Runout ratio 704 704 704 704 

0.99 Regression 177 227 317 537 

 

  



∆x/Xβ are negatively correlated with δ. The Spearman rank correlation of ∆x with δ is  

-0.50 (p = 4 x 10-4) and the correlation of ∆x/Xβ with δ is -0.57 (p = 4 x 10-5). This implies 

that longer runout distances are associated with gentler slopes in the runout zone, which 

contradicts the findings shown in Table 4.12. A possible explanation for this result is the 

presence of numerous paths with hockey-stick profiles in the dataset. Ten of the 46 paths 

(22 %) used in the analyses were classified as having hockey-stick profiles. As discussed 

in Section 4.5.7, paths with hockey-stick profiles are associated with lower α values, and 

consequently longer runout distances. This relationship can also be observed in the 

multiple regression Equation 4.11, whereby the negative regression coefficient for TP  

(βi = -2.60) means that high values of the predictor variable TP (i.e. hockey-sticks) tend to 

reduce the response variable α and therefore increase the runout. By definition of a 

hockey-stick profile, the slope angle in the runout zone is close to 0º (Martinelli, 1986). 

Thus, paths that have hockey-stick profiles have low values of δ, and these paths are also 

associated with longer runout distances. This argument agrees with the results shown in 

Table 4.12. 

          Based on the above results, paths with hockey-stick profiles may have a very strong 

affect on the statistical models developed in this thesis, and the number of hockey-stick 

profiles found in the dataset may be proportionately higher than in other datasets. From a 

terrain perspecitve, it may be the case that hockey-stick profiles are more common for 

short slopes than with taller slopes, and such profiles can have a profound effect on 

extreme runout distances. 

          Perhaps the most important finding observed in Table 4.12 is that the runout ratio 

model is more conservative than the regression model except for P = 0.5 and δ = 15º. This 

agrees with the results in Table 4.11. This result is most profound for the highest non-

exceedance probability analysed (P = 0.99), where the runout ratio method estimates 

runout distances between 1.5 and 4 times the distance estimated with the regression 

method for δ = 0º to δ = 15º. 

 

4.7 Summary 

          In this chapter, several models were developed to estimate runout distance based on 

terrain parameters measured during field studies. Two survey sites with very steep runout 
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zones were removed from the analysis, leaving 46 paths available to develop the runout 

models. 

          Several models were developed using the runout ratio method, which is based on the 

assumption that runout distances obey an extreme value (Gumbel) distribution. The 4-

Range model was first developed using a β point defined where the slope first decreases to 

10º, similar to previous studies, although this definition provided a poor fit of the data to a 

Gumbel distribution. Further analyses showed that a better fit was obtained when the β 

point was defined where the slope first decreases to 24º. This model included data from 

the four mountain ranges, implying that there is little observed difference in runout 

distances from short slopes between the four Canadian mountain ranges included in this 

study. 

          The runout ratio method was used to develop separate models for individual ranges, 

of which only the Coast Range data provided a good fit to a Gumbel distribution. The 

small number of data for this analysis (n = 15) limits the utility of this model, but the good 

fit of data to a Gumbel distribution (R2 = 0.98, SE = 0.072) shows promise that an 

individual range model could be developed for the Coast Range with additional data. 

Scale effects were analysed by developing a number of models using variable upper limits 

on the vertical fall height of the avalanche paths. These analyses showed that the best 

results were obtained when the model was limited to paths with a vertical fall height of 

less than 275 m (R2 = 0.99, SE = 0.063). This indicates that there is a scale effect in this 

dataset of short slopes with respect to runout ratio methods. 

          Two long-running avalanche paths were noted during analyses using the runout ratio 

method. These paths both had runout zones that were within partly confined stream 

channels and had high values of runout ratio. This channelization of the avalanche flow in 

the runout zone may have contributed to longer runout distances. These paths were 

included in subsequent analyses since the runout ratio models are most useful for 

estimating extreme runout associated with long running avalanche paths. 

          Models were then developed using a different technique based on multiple 

regression on terrain parameters. Eight potential predictor variables were chosen to 

estimate the α angle, all of which had to be geometrically independent of α. A model was 

developed using three of these variables, H0y'', TP and H0, providing a highly significant 
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fit of the data to a normal distribution (adjusted R2 = 0.79, SE = 1.9º). Attempts were made 

to simplify this model to one with only one or two predictor variables. A simplified model 

using the variables H0y'', TP was developed (adjusted R2 = 0.72, SE = 2.2º), but since H0 

needs to be calculated as a part of the variable H0y'', the original model was deemed a 

more useful model. Scale effects and the proposed physical explanations of the 

independent variables on the regression model were discussed. 

          The final section of this chapter included a comparison of models developed using 

the runout ratio and regression methods for the short slope data. It was found that the 

runout ratio method estimates more conservative (longer) runout distances than the 

regression method for most non-exceedance probabilities. This effect is very pronounced 

for the higher non-exceedance probabilities (e.g. P = 0.99), where the runout ratio method 

estimates runout distances up to four times that estimated using the regression method. 

The α angles calculated using the runout ratio method based on the runout distance for 

non-exceedance probabilities of 0.99 appear to be unreasonably low (i.e. in the range of 

12º to 15º), while those calculated using the regression method appear to be within a 

similar range of low α values found in the literature and in field measurements (i.e. in the 

range of 17º to 24º). 

          Further analyses indicated that runout estimated by the regression method depends 

strongly on δ (slope in the runout zone) for any non-exceedance probability value, while 

the models developed using the runout ratio method are independent of δ for all given 

non-exceedance probabilities. The runout distances estimated by the runout ratio method 

are comparable to values from the regression method for values around δ = 15º, which is 

also the mean value of δ for the dataset. Again, it was found that the runout ratio method is 

consistently more conservative than the regression method for variable P and δ values, and 

is most pronounced for non-exceedance probabilities of P = 0.99, where the runout ratio 

model estimates runout distances between 1.5 and 4 times the distance estimated with the 

regression method for δ between 0º and 15º. 

          The importance of hockey-stick profiles in the short slope dataset was recognized 

and discussed. When terrain parameters are taken from parabolas fitted to path profiles, 

avalanches in paths with a hockey-stick profile run father in relation to paths with other 

profiles. This has very important implications for estimating runout distances for short 
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5. DYNAMICS RUNOUT MODEL 

 

5.1 Introduction 

          Models developed for estimating avalanche runout distances using statistical 

methods were presented in Chapter 4. These models relate runout distance to simple 

terrain variables using either the runout ratio or multiple regression methods. Another 

method commonly used for estimating avalanche runout is to apply avalanche dynamics 

models. These models are based on the physical modelling of avalanche motion, often 

with friction parameters chosen to fit observed avalanche runout distances. In practice, 

statistical models are often used to define the extreme runout position in an avalanche path 

and dynamics models are subsequently used to estimate avalanche velocities and impact 

pressures in the runout zone. 

          The friction values used in avalanche dynamics models are physically based 

parameters that can vary as a function of numerous factors, including snow properties and 

path characteristics such as slope angle and surface roughness. True values of friction 

coefficients for moving snow are difficult to determine using lab experiments (McClung, 

1990). Because of this, and the large variability between avalanche paths and types of 

snow involved in an avalanche, friction coefficients are often estimated by back 

calculating values based on observed avalanche runout distances, or values are assigned 

based on a range of values given within the literature (e.g. Buser and Frutiger, 1980) and 

interpreted with the experience of the practitioner. Transference methods are also 

sometimes used, whereby information from avalanche paths with known runout distances 

is used to estimate friction parameters for the path of interest by systematically comparing 

topographical parameters between paths (e.g. Sigurðsson et al., 1998). 

          Mears (1992, p. 27) remarks that “statistical analysis has shown that the assumed 

friction parameters cannot be correlated to measurable terrain variables, such as path size 

or shape”. Bakkehøi et al. (1981) found that scaling the friction parameter, M/D, in the 

PCM model (Perla et al., 1980) with the vertical fall height of the path allowed them to 

narrow the possible range of the other friction parameter, µ. However, they found that 

friction parameters could not be directly associated with topographic variables, and using 

the vertical fall height in analyses merely narrowed the range of possible friction 

93 



coefficient estimates. 

          It is proposed that, by selecting a simple avalanche dynamics model best suited to a 

dataset of short slopes, terrain parameters may be used to narrow the range of friction 

coefficient values and possibly provide a first estimate, or average value, of the friction 

coefficients to be used in the model. Such a model could help reduce some of the 

uncertainty associated with avalanche dynamics modelling by providing a first estimate of 

the friction parameters. These values could then be refined by the practitioner based on the 

knowledge of variables such as terrain characteristics, avalanche velocity and slope angle, 

and combined with expert judgment. Once an average friction value for a path was 

estimated, it could then be adjusted to provide more realistic values for various parts of the 

path (McClung, 1990). 

 

5.2 Selecting the model 

          Of the avalanche dynamics models discussed in Chapter 2, very few can be 

considered useful for application to short slopes. Reasons for this include that many 

models include empirically based assumptions that were developed from a dataset of large 

avalanche paths, and that many models assume avalanche flow dynamics that may not be 

well suited to smaller slopes (e.g. avalanche motion as a turbulent fluid). The Swiss 

dynamics model (Salm et al., 1990) is an example of a model based on a physical 

description of avalanche flow that has subsequently been modified to fit a dataset of Swiss 

avalanches. Such models have limited utility for a dataset consisting entirely of short 

slopes. Thus, one seeks a simple avalanche dynamics model that does not include 

empirically derived assumptions, and has a relatively simple mathematical formulation. 

Three models that meet this criterion are the Leading Edge Model or LEM (McClung and 

Mears, 1995), PCM (Perla et al., 1982) and the PLK (Perla et al., 1984) models. All three 

models have different theoretical backgrounds and assumptions, but are all relatively 

simple models in terms of mathematics and application. 

          The PCM model, although mathematically simple, requires the input of two friction 

parameters, µ and M/D. The PLK model has the same two friction parameters, µ and M/D, 

but also has a random particle velocity parameter, for a total of three parameters that need 

to be estimated. The PCM and PLK models have previously been described in Sections 
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1.7 and 2.2. The presence of two or more friction parameters makes estimation of average 

values of the friction coefficients difficult when using regression methods based on terrain 

parameters. For this reason, these two models are not considered for analysis in this 

section. 

          The LEM has several qualities that make it the best candidate for application to a set 

of short slopes. First is that the simplified LEM requires input of only one basal friction 

parameter, µ, whereas most other models require at least two friction parameters. Thus, 

there is one unique solution when solving for a specified runout distance in a path. Models 

that use more than one friction parameter have non-unique solutions for a specified runout 

distance and typically require that one parameter be fixed while the second parameter is 

adjusted to fit a known runout distance in a path (e.g. Lied et al., 1995). 

          The second quality that makes the LEM model a good candidate for application to 

short slopes is that it calculates avalanche runout for the tip (leading edge) of the 

avalanche, rather than for the centre-of-mass of the deposit. 

          The third, and perhaps most important reason for selecting the LEM is that it treats 

avalanche motion as a granular flow (Dent, 1986; Dent, 1993). For short slopes, many 

avalanches would not have sufficient time, travel distance or velocity to fully break up a 

slab and form a mass that behaves predominantly as a turbulent fluid. A more probable 

situation is that avalanches on short slopes behave like a flowing granular material, 

without the substantial turbulence associated with larger avalanches, and especially with 

the powder cloud. Thus, the LEM likely models avalanche motion for short slopes more 

closely than the PCM, PLK or Swiss models. 

          Based on these three qualities, the LEM is chosen for analyses in the following 

sections. 

 

5.3 Leading Edge Model 

          The Leading Edge Model calculates the stopping position of the tip of an avalanche 

by solution of one-dimensional momentum and continuity equations (McClung and 

Mears, 1995). This model assumes that the avalanche mass behaves as a dense granular 

material, and that basal drag is the dominant frictional force in the equation. Resistance at 

the top of the avalanche is also included in the model, but can be can be ignored in some 
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cases of practical interest (McClung and Mears, 1995). This model also incorporates a 

passive snow pressure term that accounts for the slope angle dependence of basal 

resistance. The model was developed for use in the runout zone where granular flow is 

expected to be the dominant flow mechanism, and requires an incoming avalanche 

velocity be specified, usually at the top of the runout zone. 

          The LEM model assumes that avalanche discharge per unit width is constant, which 

is an approximation, but also a reasonable assumption in the runout zone (McClung and 

Mears, 1995). Many other models assume conservation of mass from the starting position 

to the runout position (e.g. Perla et al., 1980; Salm et al., 1990) which, due to entrainment 

and deposition of snow in different parts of the path, is likely to introduce larger errors 

into the model than one that only assumes constant mass in the runout zone. 

          The force-momentum equation for the Leading Edge Model is expressed as 

(McClung and Mears, 1995) 

where 

and 

In the preceding equations, v is the speed of an avalanche along an incline at time t, g is 

the gravitational constant, µ is the basal frictional coefficient, ψ is the slope angle in the 

segment of interest, v0 is the incoming velocity of the avalanche entering that segment, ψ0 

is the slope angle on entering a segment, h0 is the flow depth on entering the runout zone, 

kp is the coefficient of passive snow pressure, D0 is the turbulent resistive force, ρt is the 

density of the snow-dust-air mixture, ρ is the average flow density, CD is the drag 

coefficient and h is the average flow thickness measured perpendicular to the slope. 

          In the above equations, the term V is described as the momentum loss that is applied 

to the flow at the transition between slope segments with different average slope angles. In 
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the interest of simplifying the model for practical application (McClung, 2001c), the 

passive pressure term in Equation 5.3 may be ignored, resulting in the momentum 

correction 

          Solving for Equation 5.1, the velocity at the end of a segment (Point B) can be 

related to the velocity at the beginning of the segment (Point A) by the simplified 

expression 

where x is the length of the segment between Points A and B, measured along the slope, 

and G0 is the expression shown in Equation 5.2. Thus, the velocity of the avalanche can be 

calculated at each point in the path with knowledge of the incoming velocity at the 

beginning of the segment, and by applying a momentum correction (Equation 5.5) at each 

slope transition. In the following segment, the velocity at Point B, vB, becomes the initial 

velocity at Point A, vA, for the next segment, and so on down the profile. All that is 

required to initiate and apply the model is an estimate of the incoming velocity, v0, an 

estimate of the friction coefficient, µ, and a path profile divided into i segments of length 

xi, each with an approximately constant slope angle, ψi. 

          In the runout zone, McClung and Mears (1995) argue that the D0v2t term in Equation 

5.1 can be ignored, which allows the equation to be solved analytically. Thus, the runout 

distance, XR, measured in the last segment of the profile is 

The above model simplifications result in a model that can easily be applied to individual 

avalanche paths and solved analytically. Equations 5.2, 5.5, 5.6 and 5.7 form the 

fundamental equations for the Simplified LEM (McClung, 2001c). 

          Because of the limited vertical fall height for short slopes, there is a strong argument 

for the case that granular flow is the appropriate description of the primary flow 

mechanism for these paths. The LEM is designed to be applied to the runout zone where 

granular flow is believed to be the dominant flow mechanism. The incoming velocity of 

an avalanche is estimated based on real velocity measurements of avalanches, for which 

the upper limit is typically assumed to be a function of the slope length, S0 (McClung, 
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1990), or the vertical fall height, Hα (McClung and Schaerer, 1993, p. 110). Thus, 

conditions in the starting zone and track are not important in this model, and modelling 

typically is initiated in the lower part of the track or top of the runout zone (McClung and 

Mears, 1995). 

 

5.4 Application of the dynamics model 

          Simplified Leading Edge Models were constructed for each of the 48 avalanche 

paths in the dataset. The two long-running paths that were noted in Section 4.4.6 (Monte 

Blanche LaMontagne and Blowdown Creek) were also included in these analyses as 

dynamics models may be used to model unusual paths, and typically work better than 

statistical runout models for these paths. Segments in the models represented the segments 

of constant slope angle that were measured during the field survey. The last segment in the 

LEM model was the last surveyed section of the path of which the downslope end of the 

segment corresponds to the interpreted extreme runout position. Each path typically had 

between 10 and 25 segments (Section 3.4). 

          It was decided that one of the fundamental assumptions of the model – that the 

model is initiated with an estimated initial velocity at the top of the runout zone – would 

need to be overlooked for two reasons. The first reason is that avalanche velocities are 

typically estimated from datasets of velocity measurements from avalanches around the 

world, and these datasets typically include few short slopes (McClung, 1990; McClung 

and Schaerer, 1993, p. 110). Some velocity measurements for shorter slopes do exist (e.g. 

Gubler et al., 1986), but are very limited in number. The second difficulty is where to 

define the starting point for the model. For many of the short slope paths, the track was 

either very short or not present, and thus defining the location to start the model was 

difficult. Also, the point from which to measure runout distances for short slopes (β point) 

is interpreted to be the location where the slope first decreases to 24º (Section 4.4.3), 

which many would argue is still part of the track. 

          In consideration of the above arguments, it was decided that the model would be 

initiated at the top of the starting zone (starting position), the only known boundary 

condition for velocity in the path other than the extreme runout position. At both these 

locations, the velocity of the extreme avalanche is assumed to be zero, and thus both these 
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locations serve as suitable boundary conditions for the model. It is common practice to 

initiate other dynamics models at the top of the starting zone (e.g. Mears, 1992, pp. 27, 29, 

31), and for practical purposes this assumption was also applied for the LEM, recognizing 

that entrainment and deposition are neglected. 

          After setting up the LEM for each path, the friction coefficient, µ, was adjusted until 

the stopping position of the model matched the extreme runout position interpreted from 

vegetation damage observed in the field. Thus, a unique value of µ was associated with the 

extreme runout position for each path. This is a very common technique for obtaining 

velocity estimates for extreme avalanches (Mears, 1992, p. 28). The calculated value of µ 

can be interpreted to be the mean friction coefficient for the entire path. McClung (1990) 

and McClung and Mears (1995) point out that the friction coefficient may need to be 

varied along the runout zone, as friction conditions at the base of the avalanche tend to 

increase with increasing distance in the runout zone and as the mass decelerates and stops 

(McClung and Mears, 1995). This correction was not applied for the avalanche paths, so 

only an average value of µ was calculated. It should be noted that the theoretical upper 

limit of the friction coefficient, µmax, is tan α (Scheidegger, 1973). Thus, based on the 

range of α in this dataset (18.8º < α < 39.0º) from Table 4.1, initial estimates for µmax 

should range between 0.34 and 0.80, with a mean µmax of 0.49 corresponding to the mean 

α of 26.5º. 

          Table 5.1 shows the statistical distribution of the average friction coefficients and 

maximum velocity in the profile calculated using the LEM for each path. Additionally, 

statistics are presented for the theoretical upper limit for the friction coefficient, µmax, 

Table 5.1 Statistical distribution of friction parameter, µ, and 
maximum velocity predicted by the Leading Edge Model 

 Average µ µmax = tan(α) Maximum 
velocity (m/s) 

N 48 48 48 
Mean 0.49 0.50 33 
Standard Deviation 0.11 0.10 8 
Minimum, Q0 0.29 0.34 18 
Lower Quartile, Q1 0.42 0.43 27 
Median, Q2 0.47 0.50 34 
Upper Quartile, Q3 0.56 0.57 39 
Maximum, Q4 0.80 0.81 56 
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based on the observed extreme runout position. As can be seen in Table 5.1, the values for 

average µ range between 0.29 and 0.80, which is in very close agreement with the range of 

values for the theorectical upper limit of µmax, (0.34 to 0.80). This is not surprising since 

the LEM model is being fitted to observed values of α (the observed extreme runout 

position) and therefore these values should be very closely related. 

          The maximum velocity calculated by the LEM (Table 5.1) ranges from 18 to 56 m/s 

(mean of 33 m/s), and matches very closely the range of typical dry snow avalanche 

maximum velocity estimates provided by Mears (1992, p. 11) for slopes with a vertical 

fall height of between 100 and 500 m (20 to 55 m/s). Paths in the dataset with larger 

vertical fall heights (e.g. Mount Seymour, Hα = 593 m) are associated with avalanche 

velocities at the upper end of this range (e.g. maximum velocity of 56 m/s in the LEM 

simulation). Gubler et al. (1986) measured the velocity of several small (< 500 m3) 

avalanches using doppler radar methods and recorded maximum velocities ranging 

between 13 and 28 m/s. Based on these two sources, the LEM model fitted to the observed 

extreme runout positions is believed to be providing a reasonable representation of 

avalanche velocity in these paths. These measured speed values are less than the mean 

value (33 m/s) estimates using the LEM probably because the measure avalanche speeds 

are not representative of extreme avalanches but, rather, represent avalanche speeds in 

smaller, artificially triggered avalanches. 

 

5.5 Multiple regression model for estimating the friction parameter 

          Similar to the methods used in Section 4.5, multiple regression methods may be 

used to try to relate various independent predictor variables to a response variable, in this 

case the average friction coefficient, µ, in the LEM. Possible predictor variables for µ 

were chosen from the 25 distinct terrain variables shown in Table 4.1 by including only 

those variables that are not a function of µ and are not categorical variables. Since, µ is 

strongly related to α (Scheidegger, 1973), the same 14 potential predictor variables used in 

the regression for α (Section 4.5.2) were used as potential predictors for µ (Table 5.2). 

          Spearman rank correlations betweeen the predictor variables and µ are shown in 

Table 5.2. Significant variables (p < 0.05) are highlighted. Seven of the 14 variables are 

significant this level and these were used to build the regression model. Backward 
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elimination multiple regression methods were used with these seven predictor variables to 

obtain the best fit of the predicted values of µ to the observed values. 

          A plot of the predicted against the observed data in the early part of the analyses 

showed one significant outlier, Mount Seymour, that had a standard residual in excess of 

three standard deviations from the mean. This is the same result found in Section 4.5.2 and 

consequently this path was excluded from subsequent analyses. After removal of this 

outlier from the regression model, variables were systematically removed from the 

regression equation (backward elimination) when they were found to have a minimal 

effect on the model (i.e. variable F-values were less than a specified threshold at each step 

in the regression). F-values (Table 5.3) were computed at each step in the regression to 
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Table 5.2 Spearman rank correlations between the response variable, µ, and the predictor 
variables used to develop the multiple regression model 

Variable N R p1 
Beta angle, β (º) 48 0.328 0.02 
Vertical height to β point, Hβ (m) 48 0.681 9.8×10-8 
Horizontal reach to β point, Xβ (m) 48 0.662 3.0×10-7 
Vertical height to low point on parabola, H0 (m) 48 0.724 5.9×10-9 
Second derivative of the slope function, y'' (m-1) 48 -0.340 0.02 
Scale parameter for path profile, H0y'' 48 0.594 8.5×10-6 
Start zone inclination,θ (º) 48 0.112 0.45 
Start zone aspect, Aspect (º) 48 -0.0702 0.64 
Start zone elevation, SZ Elev (m) 48 0.111 0.46 
Runout zone elevation, RZ Elev (m) 48 0.0186 0.90 
Surface roughness, SR (m) 48 0.0315 0.83 
Wind Index, WI (ordinal data) 48 -0.104 0.48 
Width of start zone, W (m) 48 -0.238 0.10 
Terrain Profile, TP (ordinal data) 48 -0.449 1.4×10-3 
1 Rows for which p ≤ 0.05 are marked in bold 

Table 5.3. Seven predictor variables used in multiple regression 
analyses for µ and corresponding backwards elimination F values 

Variable F to remove 1 
Beta angle, β (º) 10.489 
Vertical height to β point, Hβ (m) 0.523 
Horizontal reach to β point, Xβ (m) 7.575 
Vertical height to low point on parabola, H0 (m) 0.0359 
Scale parameter for path profile, H0y'' 29.021 
Second derivative of the slope function, y'' 1.039 
Terrain Profile, TP (ordinal data) 72.674 
1 Rows for which F ≥ 3.1 (1% significance level) are in bold 

  



help facilitate removal of variables from the regression equation. Using a threshold F-

value of 3.1 (1 % significance level, υ1 = 7, υ2 = 39; Mendenhall and Sincich, 1996, p. 

235, 821), all variables but but H0y", TP, β and Xβ were eliminated from the regression 

equation. Additional analyses showed that β and Xβ could also be removed from the 

regression equation with minimal effect on the results. Thus, β and Xβ were removed and 

the remaining two predictor variables in the regression equation were H0y" and TP. 

Removal of either of these two variables from the regression had a very large adverse 

effect on the model, with adjusted R2 values going from 0.76 using both variables to less 

than 0.40 when either of these variables was removed. The resulting regression equation is 

This model has an adjusted R2 of 0.76 and a standard error of 0.052, and utilizes 47 of the 

48 avalanche paths in the dataset for model development. The regression model has a 

significance level of 8.5 × 10-15, which is highly significant. It can be observed that these 

two predictor variables are topographic parameters derived from the slope profile 

(Figure 4.1) and were also used in the regression model for estimating α (Section 4.5). The 

similarity of Equation 5.8 to the regression equation for α (Equation 4.12) is not 

unexpected considering the strong relationship between average µ and α. A summary of 

the regression model is shown in Table 5.4 

 

5.6 Residual analysis 

          The regression model developed in Section 5.4 was accepted as a promising model 

based primarily on the fit of the predicted values to observed values of µ in terms of the 

adjusted R2 and the standard error, SE. Before acceptance of this regression model, the 

residuals of regression are analysed assess the fit of the model to the data. 
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Table 5.4 Results of multiple regression analysis for µ 

Adjusted R2 = 0.76, n = 47 
SE = 0.052, p < 8.5 ×10-15 

Coefficient 
βi 

Standard 
error of βi 

p 

Intercept 0.515 0.0295 < 10-19 

H0y'' 0.578 0.0569 4.1 x 10-13 

TP -0.107 0.0125 7.2 x10-11 

  

TP0.1070.5780.515µ 0 −′′+= yH (5.8) 



          The assumption of constant variance is tested by examining a plot of standard 

residuals for random scatter about zero (Figure 5.1). Visual inspection of Figure 5.1 shows 

that the assumption of constant variance is satisfied. 

          The distribution of the standard residuals is shown in Figure 5.2 along with the 

expected normal distribution. The K-S test for normality has a d value of 0.15 (p > 0.20), 

while the Lilliefors test has a significance value of p < 0.01. Thus, the hypothesis of 
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normality of the residuals is not rejected based on the K-S test but is rejected based on the 

Lilliefors test. Nevertheless, the model is considered acceptable since the regression 

method is robust with respect to non-normal residuals (Mendenhall and Sincich, 1996, p. 

412). 

          The Durban-Watson statistic for this regression has a value of 2.0, indicating that the 

residuals are not serially correlated for this model. 

          Based on Spearman rank correlations between H0y" and TP (Spearman R = 0.21,  

p = 0.17, n = 47), these two variables are not cross-correlated at the 10 % significance 

level (p < 0.10), indicating that strong multicollinearity does not exist in this model. 

Different values of Spearman rank correlations were obtained than those calculated 

between H0y" and TP in Section 4.5.4, in which it was found that they were correlated at 

the 5 % (p < 0.05) level. This difference may be explained by the inclusion of the two 

paths (Monte Blanche LaMontagne and Blowdown Creek) in the regression for µ, while 

these paths were excluded from the regression for α since they are atypical paths that do 

not fit well into the statistical runout estimation methods of Chapter 4. It must be 

concluded that these two paths have a large effect on the correlation between H0y" and TP. 

          Since the basic assumptions for multiple regression have largely been satisfied, it is 

concluded that the regression equation developed for estimating µ (Equation 5.8) is 
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acceptable. 

 

5.7 Proposed physical effects of independent variables 

          The two independent variables used in the regression model in Section 5.4, H0y" and 

TP, are topographic parameters that are related to the terrain profile for each path 

(Figures 4.1 and 4.2). While both of these parameters are statistically important parts of 

the regression model, the physical effect of each variable should be discussed to evaluate 

their individual contribution to the model. 

          The scaling parameter, H0y" is strongly and positively  correlated with µ (Spearman  

R = 0.59, p = 8.5 × 10-6), which means that higher values of H0y" are associated with 

higher friction coefficients in the LEM. Since higher friction coefficients provide more 

resistance in the dynamics model, they also contribute to shorter runout distances. This is 

consistent with the results discussed in Section 4.5.7. The relationship between the scaling 

parameter, H0y", and the average friction coefficient in the analyses using the LEM are 

shown on Figure 5.3. Reiterating the findings of Section 4.5.7, highly curved paths 

(high y") have greater energy losses associated with decreasing slope angles and 

consequently reduced runout potential (higher µ). The lowest amount of energy loss would 
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be associated with a perfectly linear slope, for which y" = 0. This phenomenon is 

accounted for in the LEM by applying a momentum correction (Equations 5.3 and 5.5) at 

the transition between segments in the analysis. On a nearly linear slope ψ0 ≈ ψ in 

Equation 5.5, and thus cos(ψ0 - ψ) ≈ 1. Thus, no momentum correction is applied for a 

nearly linear slope. 

          The variable TP, the terrain profile (Figure 4.2), is strongly and negatively correlated 

with µ (Spearman R = -0.45, p = 1.4 × 10-3). Thus, when terrain parameters are taken from 

parabolas fitted to path profiles, avalanches in paths with hockey-stick profiles run farther 

in relation to paths with other profiles. This is consistent with the results of Section 4.5.7. 

          A box and whisker plot showing the relationship of TP with µ is shown in 

Figure 5.4. This figure clearly shows µ as a decreasing function of TP. What is most 

important to observe is that the range of friction coefficients associated with hockey-stick 

profiles (TP = 3) is quite limited, with the friction coefficient lying within the range of 

0.29 < µ < 0.55. Fifty percent of these values (25th to 75th percentile) lie in the narrow 

range of 0.40 < µ < 0.45. It can be observed that a much larger range of friction 

coefficients are associated with linear (TP = 1) and concave parabola (TP = 2) profiles. 

The low values of µ associated with hockey-stick profiles further substantiates the 

argument that avalanches in these paths may flow greater distances – perhaps due to 

fluidization – upon reaching an abrupt slope transition (Martinelli, 1986; K. Lied, personal 

communication, 2002), and possibly also a result of the flow material over-riding snow 

trapped at the slope transition (McClung and Mears, 1995). 

 

5.8 Summary 

          Multiple regression methods were used to develop a model to estimate the average 

friction coefficient, µ, in the LEM based on various terrain variables. Average values of 

the friction coefficient in a path were obtained by fitting the stopping position of an 

avalanche in the dynamics model to the interpreted extreme runout position surveyed 

during the field studies. 

          The regression model providing the best fit for the short slope dataset uses the 

terrain parameters H0y" and TP to predict µ, and is very similar in form to the regression 

model for α that was developed in Section 4.5. This result could be expected since µ is 
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strongly related to observed α. The predictive model for µ has an adjusted R2 of 0.76 and a 

standard error of regression of 0.052, and utilizes 47 of the 48 paths in the dataset. One 

path was excluded from the analysis as an outlier since it had residuals more than three 

standard deviations from the mean. Residual analyses show that the basic assumptions for 

multiple regression have largely been satisfied. 

          One of the fundamental assumptions of the LEM, that the model be initiated in the 

lower part of the track or upper part of the runout zone, was overlooked by initiating 

avalanche motion at the top of the starting zone. This can be justified when considering 

that the purpose of this analysis was to develop a useful tool for the practitioner to 

estimate extreme runout distances, and the very few maximum velocity estimates 

available for short slopes. 

          The regression equation developed provides an average value of the basal friction 

coefficient, µ, to be input into the LEM to model avalanche motion in short slopes. This 

value is only meant to be a first estimate of the friction coefficient, and may need to be 

subsequently modified based on the knowledge of other terrain and snowpack variables, 

and interpreted with expert judgment. Also, this value may need to be modified for 

various parts of the path to reflect changes in terrain and snowpack characteristics. The 

importance of hockey-stick profiles with respect to estimating µ was discussed, 

particularly with respect to hockey-stick profiles which were shown to be associated with 

lower values of the friction coefficient and consequently longer runout distances. 
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

 

6.1 Statistical runout models 

• Runout ratios for 48 short slopes from four mountain ranges are well fit by a Gumbel 

distribution (R2 = 0.99, SE = 0.059) when the β point is defined at 24º, rather than the 

conventional 10º.  

• The 4-Range model includes data from all four mountain ranges in the study, implying 

that there is little difference between mountain ranges in terms of runout distances for 

short slopes when using the runout ratio method. 

• The runout ratio method was used to develop separate models for individual ranges, of 

which only the Coast Range data were well fit (R2 = 0.98, SE = 0.072) by a Gumbel 

distribution. This result shows promise that an individual range model might be 

developed for the Coast Range with additional data. 

• The best results using the runout ratio method were obtained when the model was 

limited to paths with a vertical fall height of less than 275 m (R2 = 0.99, SE = 0.063). 

This indicates that there is a scale effect in this dataset of short slopes with respect to 

runout ratio methods. 

• Two long-running avalanche paths with runout zones within partly confined stream 

channels were noted in the analyses for the models developed using the runout ratio 

method. Channelization of the avalanche flow in the runout zone probably contributed 

to longer runout distances in these paths. 

• The model developed using the multiple regression method uses three terrain variables 

(H0y'', TP and H0) to estimate the α angle for extreme runout (adjusted R2 = 0.79,        

SE = 1.9º). Scale effects are less pronounced in models developed using the multiple 

regression method compared to the runout ratio models. 

• A comparison of the two statistical methods shows that the runout ratio method 

estimates more conservative (longer) runout distances than the regression method for 

most non-exceedance probabilities. This effect is very pronounced for the higher non-

exceedance probabilities (e.g. P = 0.99), where the runout ratio method estimates 

runout distances up to four times that estimated using the regression method. 

• Runout estimated by the regression method depends strongly on δ (the slope angle 
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between the α and β points) for any non-exceedance probability value, whereas the 

runout ratio model is independent of δ for all given non-exceedance probabilities. The 

runout ratio method is more conservative than the regression method for most values 

of  P and δ. 

• When terrain parameters are taken from parabolas fitted to path profiles, avalanches in 

paths with hockey-stick profiles tend to run farther in relation to paths with parabolic 

or almost linear profiles. This has important implications for estimating runout 

distances for short slopes, particularily when applied to land-use planning. 

 

6.2 Multiple regression model for µ in the Leading Edge Model (LEM) 

• Multiple regression methods were used to develop a model to estimate the average 

basal friction coefficient, µ, in the LEM based on easily measured terrain variables. A 

regression model was developed for the short slope dataset that uses the terrain 

parameters H0y" and TP to estimate µ, with an adjusted R2 of 0.76 and a standard error 

of 0.052. 

• The regression model for µ provides an average value of µ to simulate avalanche 

motion on short slopes with the LEM. This value provides a first estimate of the 

friction coefficient, which can be modified based on knowledge of other terrain and 

snowpack variables, and interpreted with expert judgment. Also, this value can be 

modified for various parts of the path to reflect changes in terrain and snowpack 

characteristics. 

• When terrain parameters are taken from parabolas fitted to path profiles, avalanches in 

paths with hockey-stick profiles are associated with lower values of the friction 

coefficient and consequently run farther in relation to paths with other profiles. 

• Considering the limitation of statistical models for estimating runout in atypical paths, 

the regression model provides an important tool for estimating runout on short slopes. 

 

6.2 Recommendations for future research 

          This study included 48 avalanche paths which was sufficient to build models for 

combined mountain ranges, but was not sufficient data for properly assessing each range 

individually. Thus, a larger dataset could be developed that includes more sites in the 
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individual ranges. Most notably, the Coast Range shows promise for having an individual 

model developed using the runout ratio method. 

          Since combined models could be developed for paths from four distinct mountain 

ranges in Canada, regional differences between ranges in the models are interpreted to be 

weak. However, there may be important climatic variations within these ranges that 

influence runout distances. Future studies could look into specific climate variables (e.g. 

30-year maximum water equivalent of snowfall) and assess their affect on runout 

distances. 

          The models developed in this thesis could be verified by applying them to other 

short slopes both within Canada and internationally. It may be possible to extrapolate this 

model for use in other regions of the world, and refine the models by inclusion of paths 

from other regions. Verification of the models was not performed in this study due to the 

limited number of data. Analyses with additional data to verify the models would improve 

the reliability of these models. 

          The upper limit on the slope height for the regression model could be determined 

with more data for taller slopes.  

          Since the regression model developed for short slopes with the three terrain 

variables, H0y'', TP and H0, applies across mountain ranges, this approach could be tried 

for taller slopes. It might provide a means of estimating runout across ranges for taller 

slopes, especially in areas for which there are no regional datasets and parameters for 

existing tall slope models. 

          While a model for estimating the average basal friction coefficient was developed, 

the effect on this coefficient of distance from the starting position, ground roughness, 

confinement, velocity and snow properties was not studied. Analyses of these effects 

could lead to refined friction coefficients for various segments of an avalanche path, and 

to improved calculations of runout, velocity and impact pressures. 
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APPENDIX A - EXAMPLE OF FIELD NOTES 
 
          An example of field notes taken during the survey of the Hector Ridge North 

avalanche path in the Rocky Mountains is shown in Figure A.1. Field notes were recorded 

in a field book on water-resistant paper. General terrain characteristics were recorded on 

the first page, and survey notes were recorded on subsequent pages. Field observations 

were recorded in a manner consistent with guidelines developed as part of the Canadian 

Avalanche Association’s “Introduction to Snow Avalanche Mapping” course (Canadian 

Avalanche Association, 2000) and Martinelli (1974). 

          Columns for the survey notes include: Pt., the survey point number; Slope Down, the 

slope angle measured with the clinometer down the slope; Slope Up, the slope angle 

measured up the slope; Dist, the slope distance measured from the starting position or the 

segment length between survey points; Elev., the elevation measured with an altimeter; 

and Comments, a column reserved for any other observations. The comments column 

includes information on observations of vegetation in the path, including estimated return 

periods for large avalanches and the interpreted extreme runout position. Estimates of α 

and β are included in the field notes when they were measured during the field survey. 
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APPENDIX B - SAMPLE PROFILE 

 

          An example of a profile for the Schroeder Shoulder avalanche path in the Columbia 

Mountains is shown in Figure B.1. This profile shows measurement points numbered from 

1 in the starting position to 23 at the Trans-Canada Highway. Point 22 represents the 

interpreted extreme runout position interpreted from vegetation damage observed during 

the field survey. The coordinate system is measured from the origin in the lower left of the 

figure. It can be observed in Figure B.1 that the Schroeder Should path is a very good 

example of a hockey-stick profile, with an abrupt transition from the track to the runout 

zone at Point 18. 
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