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ABSTRACT

Avalanche experts recognize that short slopes have different runout characteristics
when compared to taller slopes. There have been several residential avalanche accidents in
Canada on or near short slopes, yet little research has been conducted in this field.

Data were collected at 48 short slope paths in four Canadian mountain ranges,
including the Coast, Columbia, Rocky Mountains and Quebec ranges. Field studies
included topographic surveys and estimation of extreme runout distance in each path.

Statistical runout models were developed using the runout ratio and multiple
regression methods. Regional differences between mountain ranges were not apparent in
the models. Probabilistic runout estimates are provided by these models, which are best
applied to avalanche paths less than 275 m high.

A model was developed using multiple regression methods to estimate the average
friction coefficient for use in an avalanche dynamics model. This model relates the average

friction coefficient to two topographic variables.
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1 INTRODUCTION

Beware the pine tree’s withered branch!

Beware the awful avalanche!

Henry Wadsworth Longfellow, Excelsior

1.1 Effects of snow avalanches

In Canada, snow avalanches affect both people and the results of their industry
including roads, residential developments, industrial facilities, mines, railways, power and
communication transmission lines, ski resorts, forestry operations and backcountry
recreation operations. In areas where avalanche terrain and human activities overlap, it is
often essential to define where avalanches can occur and how far they will run on and near
the bottom of a slope. The runout of an avalanche can be defined as the point of farthest
reach of an avalanche deposit within an avalanche path (McClung and Schaerer, 1993,

p. 115). The specification of the runout distance for the largest, or extreme, avalanche
expected within a path is of great importance for land-use planning and zoning in snow
avalanche prone areas. Accurate specification of the runout distance is of greatest
importance in terms of minimizing the risk to people and structures in avalanche prone
terrain. Additionally, there are important economic considerations involved when
specifying runout distances, since certain types of land uses may be excluded due to zoning
restrictions based on avalanche risk studies.

There are more than a dozen research papers on statistical avalanche runout methods.
These methods use terrain parameters to predict extreme avalanche runout positions, and
are based on fitting extreme runout positions in a particular mountain range to either
extreme value or normal distributions. While the research to date has typically focused on
taller slopes with fall heights greater than 300 metres, short slopes are also recognized by
avalanche experts as a very important topic, both from a research and a practical
engineering perspective (McClung and Lied, 1987; Schaerer, 1991; McKittrick and Brown,
1993; Jamieson and Stethem, 2002). Since 1950, avalanches have killed 31 people in and

near residential or public buildings in Canada in six avalanche events (Stethem and
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Schaerer, 1979, p. 89-93; Stethem and Schaerer, 1980, p. 19-23; Schaerer, 1987, p. 14-15;

Jamieson and Geldsetzer, 1996, p. 171-173, 178-179; Government of Quebec, 2000).
Sixteen of these fatalities and three of the avalanche events occurred in either Quebec or
Newfoundland, illustrating that avalanche problems affecting residential areas are not
confined to western Canada (Canadian Avalanche Association [CAA], 2002a, p. 2). Of
this number, twenty fatalities (65%) occurred at the base of slopes with vertical fall
heights of 150 m or less (B. Jamieson, personal communication, 2002). These numbers
illustrate the importance of the understanding of avalanche runout for short slopes.
Knowledge of avalanches from short slopes is also very important for transportation
corridors and resource industries, including forestry and mining. These industries often
have facilities or operations situated in or passing through terrain with potentially
hazardous short slopes for which there is little or no documentation of historical avalanche
activity. The ability to estimate runout distances for short slopes that affect these
industries can potentially reduce economic losses to these industries and increase worker
and public safety.

Avalanche consultants are acutely aware that the existing statistical models for
estimating avalanche runout are not very effective for short slopes. These models typically
underestimate the runout distances when compared to field observations for short
avalanche paths (McClung and Lied, 1987). Consequently, practitioners typically apply
very conservative margins of error to runout estimates when using these models for short
slopes. This additional margin of error is coupled with the intuition and experience of the
avalanche consultant to obtain runout estimates within acceptable risk levels. For at least a
decade, the eminent Canadian avalanche researcher, Peter Schaerer of Vancouver, Canada
has called for research on avalanche runout for short slopes (Schaerer, 1991). European
researchers have also acknowledged this gap in the research (B. Jamieson, personal
communication, 2002), but to date, limited research in this area has been conducted. This
project aims to fill in this gap in the research, and provide some answers to some of the
scale problems noted in previous avalanche runout studies (e.g. McClung and Mears,

1991; Nixon and McClung, 1993).



1.2 Types of snow avalanches

A snow avalanche can be defined as a volume of snow, usually more than several
cubic metres, moved by gravity at perceptible speed (CAA, 2002a, p. 3). Snow avalanches
may or may not contain other materials such as rock, soil, or ice. Avalanches release in
two distinct ways: loose snow avalanches (Figure 1.1) and slab avalanches (Figure 1.2).
Loose snow avalanches initiate at or near the
e surface when a small volume of low cohesion
. snow (typically less than 1 m’) fails and starts
| moving down a slope (CAA, 2002a, p. 3). This
mass of snow spreads outwards in an inverted
v-shape on the slope, entraining
(accumulating) additional snow as it moves
down the slope. Loose snow avalanches, also
known as point releases, are typically small,
but occasionally involve large masses of snow,
particularly when the snow is wet. Slab

avalanches are initiated by a failure at depth in

j the snowpack, followed by the sliding
’h.» : "“\‘ ™\ _i movement of a cohesive slab down the slope.
Figure 1.1. Loose snow avalanche This slab initially moves as a cohesive unit, but

(B. Jamieson photo)

then breaks up into smaller
particles. Most of the larger and
more destructive avalanches
initiate as slab avalanches, and
are considered the more
dangerous of the two types of
avalanches (McClung and
Schaerer, 1993, p. 61). This

study is primarily concerned with

runout of the largest avalanche

Figure 1.2. Slab avalanche (B. Jamieson photo)

e

event within an avalanche path,



which is typically associated with dry snow slab avalanches.

1.3 Avalanche terrain
An avalanche area, or avalanche terrain, is defined as a location with one or more
avalanche paths (McClung and Schaerer, 1993, p. 89). An avalanche path is defined as a

fixed location within an

avalanche area where

| avalanches move.
Sometimes, evidence of
"% avalanche activity is very
obvious, with numerous

« avalanche paths affecting a
5 particular feature such as a
# highway (Figure 1.3).
However, avalanche terrain
is sometimes difficult to

identify because evidence of

Figure 1.3. Numerous avalanche paths affecting the Bear
Pass, British Columbia, Canada (British Columbia
Ministry of Transportation photo) obscured by vegetation,

avalanche activity may be

avalanche paths are above

of different age classes) or
vegetation in the paths, or paths
are overlooked because of their
small size (Figure 1.4). The size
of avalanche paths can vary
from small paths with a vertical

Figure 1.4 Smaller avalanche paths that are obscured  fall height of approximately
by vegetation. The full width of this slope is considered
avalanche terrain and capable of producing destructive
avalanches (B. Jamieson photo) banks) to very large paths with

50 m (e.g. large road cuts, river



vertical fall heights on the order of
2000 to 3000 m (Figure 1.3). While

g larger paths can be easy to identify on
'I the ground and their runout zone
mapped, smaller paths are often
difficult to identify. Consequently,
short avalanche paths are often the

. ones where problems arise due to

human activities in avalanche terrain.
An avalanche path is typically

. divided into three distinct zones: a

| starting zone, a track and a runout

 zone (Figure 1.5). These zones may be

difficult to distinguish, particularly for

small paths. The starting zone is the

Figure 1.5 An avalanche path showing the three  location where unstable snow fails and
distinct zones: starting zone, track and runout
zone. Black line shows the outline of the
avalanche path from the starting zone to the starting zone typically has slope
highway (British Columbia Ministry of
Transportation photo)

begins to move down slope. The

angles exceeding 25°. Small
avalanches may stop in the starting
zone. The track is the part of the avalanche path that connects the starting zone with the
runout zone, and is sometimes referred to as the transition zone. The track is often poorly
defined for short slopes, and may not exist in some cases. The slope angle in the track is
typically between 15° and 25°. During larger (extreme) avalanche events, avalanches
typically attain a maximum velocity in the track, and have the smallest speed variations
there (McClung and Schaerer, 1993, p. 89). Small to medium size avalanches may stop in
the track. The runout zone is defined as the part of an avalanche path where avalanches
rapidly decelerate, deposit avalanche mass and stop moving. The slope angle in the runout
zone is typically less than 15°. Sometimes, the largest avalanches in a path may runout on

a lake or the valley bottom, or may run up the opposite side of the valley.



1.4 Examples of residential avalanche accidents on short slopes

To illustrate the importance of avalanches on short slopes in Canada, two examples
of residential areas impacted by avalanches are discussed below.

Blanc Sablon is a small village located in eastern Quebec, near the Labrador border
(Figure 1.6). Prior to 10 March, 1995 a blizzard had deposited 82 cm of snow in a period
of 24 hours, with winds in excess of 100 kilometres per hour (Jamieson and Geldsetzer,
1996, p. 178-179). Several houses were situated near the bottom of an approximately 85 m
high slope that accumulated large amounts of snow during the blizzard. On the night of
10 March, an avalanche released on this slope and impacted a house at the base of the
slope, tearing off the roof and pushing it to the other side of the street. The avalanche mass
buried a man, woman and son, and only the woman survived. In addition to damage to the
house, two sheds were destroyed, a power line was damaged and a pick-up truck was
partially buried. Total property damage from this avalanche was estimated at $80,000, but
additional costs since the avalanche (e.g. investigations, legal fees, mitigation) have
greatly exceeded this value. Following this accident, a 3 m high by 1 km long snow fence
was constructed along the top of the cliff above Blanc Sablon to reduce the build-up of

snow drifts and reduce the likelihood of similar events. More than a dozen houses,

Figure 1.6 Houses located near the bottom of a short slope at Blanc Sablon, Quebec. Two
fatalities occurred in a house located near these houses on 10 March, 1995. These houses
have since been relocated (B. Jamieson photo).



Figure 1.7 Short slope located adjacent to residential buildings in Kangigsualujjuaq,
northern Quebec. School that was impacted by an avalanche on 1 January, 1999 can be
observed at the far right of the photo. Buildings at left are sheds (B. Jamieson photo).

including those shown on Figure 1.6, were not impacted by this avalanche but have since
been relocated (Jamieson and Geldsetzer, 1996, p. 179).

A second fatal avalanche accident occurred in the village of Kangiqgsualujjuaq,
located in northern Quebec. On 1 January, 1999, approximately 500 people were gathered
at the local school for New Year’s Eve festivities (Government of Quebec, 2000). The
school is located near the base of an approximately 85 m high slope on which an
avalanche released while people were gathered in the school (Figure 1.7). The avalanche
continued beyond the base of the slope and struck the school gymnasium, killing 9 people
and injuring another 25.

These examples illustrate the potential serious consequences of having residential
areas located near the base of short slopes, and the need for improved knowledge of

potential runout distances from short slopes.



1.5 Avalanche motion

An understanding of avalanche motion and dynamics is important to determine the
potential avalanche velocities within a path, and to relate these velocities to potential
impacts to buildings and other structures or resources in the path. Being able to estimate
velocities in the runout zone is also important for zoning purposes since most avalanche
zoning methods incorporate a velocity dependent criterion, usually in the form of impact
pressure (e.g. Switzerland, 1984; Holler and Schaffhauser, 2001; CAA, 2002b, p. 16).

Describing the dynamics of avalanche motion is a complicated process that involves
aspects of fluid, particle and soil mechanics (Harbitz, Issler, and Keylock, 1998). The
mathematical problem of describing avalanche motion over complicated terrain is far from
solved, and many different avalanche dynamics models are used by experts around the world.
Some of these models have a theoretical basis, involve solving differential equations for mass,
energy or momentum, and treat avalanches as granular material, a fluid, or a combination of
the two (Harbitz et al., 1998). Others are based on a combination of theoretical mathematical
models and empirical input parameters (e.g. Salm, Burkard, and Gubler, 1990). Presently, all
of these models require a degree of expert judgement to determine the appropriate input
parameters for realistic modelling of velocity and runout.

When compared to wet snow avalanches (those containing large amounts of liquid
water between snow particles) dry snow avalanches typically attain the highest velocities,
often produce the largest impact pressures and travel farthest in the runout zone (Mears, 1992,
p. 9). Consequently, dry snow slab avalanches are typically used as the design case avalanche
for engineering purposes. Only the effects of dry snow slab avalanches are considered in this
study.

Dry snow avalanches (Figure 1.8) consist of a mix of snow particles and air (called a
dense core) at the bottom of an avalanche. This is sometimes accompanied by a powder
component, or powder avalanche, which usually travels in front of and above the dense
core and, sometimes, by an associated air blast which travels in front of the dense core or
powder component. These two components are typically associated with large, dry
flowing avalanches that attain sufficiently high speeds during transport over long
distances. The powder component and air blast are not typically associated with shorter

slopes and are thus not considered in this study.
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Figure 1.8 Large avalanche in motion. Note the
airborne powder component and dense flow at the
front of the mass (British Columbia Ministry of
Tranportation photo)
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With dry slab avalanches, after

release of snow in the starting zone,
the slab breaks into blocks or
particles. As the avalanche moves
farther downslope in the path, these
particles become smaller due to
particle-to-particle collisions and
interaction with the ground or snow
surface on which the avalanche
moves. Eventually, this mass will
evolve into a relatively high-density
mixture of snow particles and air, and
the motion can be described as
sliding, flowing, airborne powder, or
mixed (Mears, 1992, p. 9). As the
flow reaches a velocity greater than

approximately 10 m's™, the smaller

—. particles in this mixture become

“suspended by the turbulence of the

entrained air and forms a low-density
powder cloud on the exterior of the

dense material, or core. As this mass

flows down slope, new snow is entrained (added to the avalanche mass) near the front of the

avalanche while mass sometimes drops out of the back of the avalanche.

When an avalanche reaches a sufficiently low angle slope, deceleration and deposition

increase, and the avalanche comes to a rest. Depending on the size of the avalanche and the

terrain, this may occur in the starting zone, track or runout zone but, for the extreme events,

will be in the runout zone. In the case of short slopes, the transition from broken blocks of the

slab to a dense flow may or may not occur, depending on the length of the path, amount of

snow involved and the terrain characteristics. On very short slopes, the slab blocks may

remain partially intact well into the runout zone.
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Table 1.1 Typical dry snow avalanche maximum
velocity estimates (From Mears, 1992, p. 13)

Vertical fall height (m) | Velocity range (m/s)

100 - 200 20-35
200 - 500 35-55
500 - 1000 55-70

Traditional studies of larger avalanches define the location where the slope angle first
decreases to 10° as the start of the runout zone, and define the runout distance as the
horizontal distance measured from this point to the extreme runout position (McClung and
Schaerer, 1993, p. 117). However, many avalanches do not reach a 10° point before coming to
a stop, leaving this definition open to discussion. Avalanches that do not reach the 10° slope
angle position would thus be described as having a “negative” runout distance. For short
slopes, runout likely begins at slope angles higher than 10°, and the deceleration phase of
flowing snow avalanches may begin on slope angles less than 25° (Gubler, Hiller, Klausegger,
and Suter, 1986).

Estimates of the maximum velocity that may be attained by dry snow avalanches on
paths with variable vertical fall heights are shown on Table 1.1. These data are based on
limited velocity measurement data, destructive effects of avalanches and avalanche dynamics
calculations (Mears, 1992, p. 11). Field studies have shown that relatively high velocities (e.g.
>25m-s™) can be attained by avalanches with vertical fall heights of less than 200 m
(McClung and Schaerer, 1993, p. 105; Gubler et al., 1986), implying that the destructive
potential of small avalanches can be quite high, despite the limited vertical fall height.

Although a powder cloud component can form for avalanche speeds greater than
10 m's™ (Mears, 1992, p. 9), the powder component for short slopes is usually not important
since there is limited time for a large powder cloud to form ahead of and above the dense
flow. Thus, for short slopes, only the dense flowing core component of the avalanche is

typically considered for engineering applications.

1.6 Indicators of avalanche size and frequency
There are several ways to estimate both the size and frequency of large avalanches

within a given avalanche path, and for estimating runout distances. Oral and written history
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and direct observations of avalanches are the most reliable method for determining the runout

of avalanches in a path. Oral information about the extent of past avalanches can come from
local avalanche experts or others who have lived in the area for years and may have observed
events. Written history may come from newspapers, historical records, books, diaries or
photographs (CAA, 2002a, p. 9).

Vegetation within and adjacent to avalanche paths can provide clues about the
maximum extent of extreme avalanches, and the return period of smaller events within the
path (Martinelli, 1974). Avalanche motion can damage vegetation such as trees and bushes,
and leave evidence of impacts for decades. Table 1.2 shows some vegetation indicators as a
function of avalanche frequency.

Analysis of aerial photographs and topographic maps can aid in identifying the extent of
avalanche activity. Such analyses can be used to define the starting zones, tracks and runout
zones, and estimate the extent of damage to vegetation from avalanches. Where several time
series of aerial photographs are available, inferences about the return periods of avalanches
can sometimes be made.

Weather and snow records can be used to estimate how much snow may accumulate in
an avalanche area, and provide clues about the largest avalanches that may be expected in a
path. Variables such as the maximum 3-day storm snow accumulation can be used in
combination with avalanche dynamics models to estimate extreme runout distances (e.g.
Gubler, 1994).

Surficial materials can sometimes be used to estimate extreme runout and frequency of

avalanches in a path. Materials such as vegetation, rock and soil can be transported by large

Table 1.2. Vegetation as an avalanche-frequency indicator (From Mears, 1992, p. 21)

Return period (years) Vegetation indicators

1-10 Track supports grasses, shrubs, flexible trees up to 2 m high;
broken timber on ground and at path boundaries

10 - 30 Predominantly pioneer species; young trees similar to
adjacent forest; broken timber on ground at path boundaries

30-100 Old uniform-aged trees of pioneer species; young trees of
local climax species; old and partially decomposed debris

100 - 300 Mature, uniform-aged trees of local climax species; debris
completely decomposed; increment core data required
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avalanches and deposited in the runout zone. The location of this material can provide clues as

to the location of the extreme runout for larger avalanche events. Organic material, such as
peat, in the runout zone can sometimes be carbon-dated to provide estimates of return periods

for large avalanches (Boucher, Hétu, and Filion, 1999).

1.7 Conventional or dynamics avalanche runout models

Numerous models have been developed since the mid-1950s to simulate the motion
of dry, dense flowing avalanches (e.g. Voellmy, 1955; Perla, Cheng, and McClung, 1980;
Perla, Lied, and Kristensen, 1984; Norem, Irgens, and Scheildrop, 1987; Salm et al., 1990;
McClung, 1990; McClung, Nettuno, and Savi, 1994; McClung and Mears, 1995). These
models differ significantly from each other, demonstrating the complexity of avalanche
dynamics and lack of detailed knowledge of avalanche flow mechanisms (Keylock and
Barbolini, 2001). Harbitz et al. (1998) summarize many of the dynamics models used in
practice and some of the theoretical models that have yet to be used for practical purposes
(Table 1.3). All of these models require input of terrain characteristics and avalanche
material properties, and provide output on avalanche velocity and runout distance. Some
models also provide information on flow depth, deposit depth and the lateral extent of the
avalanche deposit.

Terrain measurements for input into dynamics models are typically obtained from
topographic maps and/or field measurements, and include measurements of slope angles
in the starting zone, track and runout zone. Avalanche characteristics such as slab
thickness in the starting zone and friction at the base of the avalanche are typically
obtained by combining published values, local experience and expert judgment.

The basic concept behind most dynamics models is that the snow accelerates in the
starting zone, reaches a maximum velocity in the track, and subsequently decelerates and
stops in the runout zone. While the terrain measurements in these models are fixed for a
particular path, some models are highly sensitive to changes in the material properties, and
thus the velocity and runout estimates can vary significantly. Additionally, some models
with more than one input parameter for material properties (e.g. models with both basal
and turbulent flow friction coefficients) can have non-unique solutions for runout distance.

For this reason, caution must be applied when using dynamic avalanche models, and they
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are often used in conjunction with statistical models for runout, field evidence of runout

and expert judgment.

The main limitation of using the dynamics method is that the parameters required for
the models are typically difficult to estimate, and usually require an intuitive feel and
experience of the modeler to provide a reliable estimate of runout. Advantages of using
the dynamics method include the ability to model atypical and complicated paths that
cannot be modelled by statistical methods. Other advantages include the ability to relate
runout estimates in terms of return intervals and risk, a requirement for some jurisdictions

(Jonasson et al., 1999)

1.8 Statistical avalanche runout models

Bovis and Mears (1976) and Lied and Bakkehgi (1980) introduced an entirely
different method for calculating runout distances based on statistical methods rather than
avalanche dynamics models. These researchers found that extreme runout measurements
for a particular mountain range can be used to estimate the runout for a particular path
within this range by applying methods from probability and statistics. The methods of
Bovis and Mears (1976) and Lied and Bakkehgi (1980) use topographic terrain parameters
to estimate runout distances, and introduced the reference £ point in the runout zone from
which to measure runout distances (Figure 1.9). They defined the 3 point as the position at
which the slope angle first reaches 10° when proceeding downslope from the starting
zone. The corresponding [ angle is defined as the angle (measured from the horizontal) at
the B point to the starting position of the avalanche path. It is common to quantify extreme
runout distances by using the a angle, defined as the angle (measured from the horizontal)
at the extreme runout position observed in the field to the starting position of the
avalanche path. The parameter a is similar to that used by Scheidegger (1973) to estimate
the average friction coefficient for large landslides. By the use of multiple regression
procedures, Lied and Toppe (1989) showed that using various topographical terrain
parameters in addition to the  angle, only the  angle was statistically significant.
Subsequently, Lied and Toppe (1989) developed regression equations relating the o angle
to B angle for mountains in Norway, and similar expressions have been developed for

mountain ranges in Canada and the United States (McClung, Mears, and Schaerer, 1989),
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Figure 1.9 Geometry of example avalanche path used for statistical avalanche runout
models

Iceland (Johannesson,1998) and Austria (Lied, Weiler, Bakkehei, and Hopf, 1995).

A second statistical method used for estimating extreme runout distances is known
as the runout ratio method. McClung and Mears (1991) found that the extreme runout
positions for avalanche paths in a particular mountain range fit an extreme value
probability density function similar to that used for water discharge from floods. With this
method, a non-dimensional runout ratio is plotted versus the probability of avalanches not
exceeding a given point on a path (non-exceedence probability). The runout ratio is
defined as the ratio of the horizontal distance from the 3 point to the extreme runout
position, Ax, to the horizontal reach from the starting position to the  point, X
(Figure 1.9). The runout ratio can take on values ranging from -co to +oo, with a negative
value indicating that the extreme runout position is located upslope of the defined  point
location (typically 10° slope angle) The non-exceedence probability, P, is defined as the
fraction of runout ratios in a particular mountain range that do not exceed a given ratio.

Studies conducted by researchers for several ranges around the world (e.g. McClung and
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Mears, 1991; Nixon and McClung, 1993) have found significant statistical relationships

between the runout ratio and non-exceedence probability (e.g R* > 0.95) when applied to
paths in a single mountain range (Mears, 1992, p. 26). Their results also show that each
mountain region consists of a different population and thus each range should be analyzed
separately.

It has been found in practice that short slopes tend to run propotionally farther than
large slopes, and therefore the models developed for particular mountain ranges using the
runout ratio method may not be applicable to short slopes (McClung and Lied, 1987;
Nixon and McClung, 1993). It is this finding that has provided the impetus for the current
study.

One benefit of statistical runout models over dynamics models is that the errors in
runout distances are quantified in standard statistical terms. Thus, a degree of reliability of
the statistical runout estimation can be applied with this type of model. The main
disadvantage of statistical methods is that they do not work for atypical paths or paths with
run-up the opposite side of the valley, or where dataset parameters are not available for a
mountain range. Atypical paths may include paths with unusually steep or small starting
zones, unusually confined paths, paths that turn corners, or where paths that include two or
more merging paths. Other limitations that have been identified (McClung, 2001a)
include: paths with more than one B point; paths that have steep runout zones; and paths
with no P point in the runout zone. Additionally, most statistical methods do not
incorporate return intervals and do not directly give the risk. Recent research by McClung
(2000) makes it possible to relate statistical estimates of extreme runout to return periods,

providing both spatial and temporal estimates of extreme avalanche runout.

1.9 Influence of terrain and climate on runout

It is generally accepted that avalanche frequency is a function of both terrain and
climate (McClung and Schaerer, 1993, p. 121). Terrain factors that affect avalanche
frequency include: slope incline of the track, shape of the track, ruggedness or roughness
of the track, vegetative cover in the path, exposure to sun and wind, and starting zone size
and steepness (McClung and Schaerer, 1993, p. 121). The climate variables with the

greatest influence on avalanche frequency include: magnitude, frequency and rate of
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Figure 1.10. Relationship between avalanche frequency avalanche forecasting (e.g.
and magnitude (After Jamieson, 2001) Judson and Erickson, 1973;
Buser, 1983; Salway, 1976). However, operational avalanche forecasting is mostly
concerned with day-to-day changes in meteorological variables, while engineering studies
for runout distances need to consider long term climate extremes common within a
mountain range.

The relationship between avalanche frequency and either runout or magnitude is
shown schematically on Figure 1.10. In this diagram, magnitude and runout are plotted on
the same axis, although these terms are not interchangeable. Runout distance is the
variable that is typically used in engineering applications to assess the size, or magnitude
of an avalanche. Avalanche volume or mass may also be used, but is of limited usefulness
in avalanche zoning applications because of the difficulty of modelling avalanche mass
balance (Sovilla, Somavilla, and Tomaselli, 2001). It can be observed in Figure 1.10 that
avalanche events range from high-frequency low-magnitude avalanches to low-frequency
low-magnitude avalanches. For engineering applications, one is interested in the low
frequency-high magnitude or runout events, known as the “tail” events on the F-M
(frequency-magnitude) graph shown in Figure 1.10. In practice, avalanche events with
return periods of 100 to 300 years are typically used for zoning and design of structures.
Occasionally, very low frequency events such as those with return periods of 1000 years
are used (e.g. Kristensen, Harbitz, and Harbitz, 2000), although this is an exception rather
than a usual practice.

Although the relationship between avalanche frequency, terrain and climate is
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relatively well understood and is used as a basis for avalanche forecasting programs

throughout the world, there exists little quantitative research on the relationship between
avalanche magnitude and climate. Most studies relate avalanche runout to terrain
variables, and assume that for longer return periods (e.g. 100 to 300 years), climatic
conditions resulting in extreme avalanches will occur within most avalanche prone
mountain ranges. This argument is complicated by the observation that statistical runout
models from one mountain range are not applicable to other mountain ranges (Mears,
1992, p. 25). The combined effect of terrain and climate variables is thus accounted for in

statistical models by developing different models for individual mountain ranges.

1.10 Applications to avalanche hazard planning and mitigation

In Canada, avalanche hazards to structures, transportation corridors and residential
areas are often mitigated by hazard or risk mapping, whereby the element at risk is
situated in an area where avalanche return periods are acceptably low, and/or potential
impact pressures are acceptably small (CAA, 2002b, p.16). When the risk from avalanches
cannot be reduced to acceptable levels by location planning, mitigation measures such as
avalanche control programs or defense structures may be applied. In Canada, avalanche
control programs are not considered acceptable for permanently occupied structures such
as residential developments (CAA, 2002a, p. 18), so avoidance of the hazard is typically
applied and, failing this, defense structures may be used.

The hazard or risk mapping process includes several steps in defining the avalanche
problem and hazard areas. Some of the following methods may be applied: terrain analysis
of maps and air photos; field studies of terrain; study of vegetation for signs of past
avalanches; use of oral and written records of avalanches; weather and snow records;
study of surficial materials; application of statistical models; and application of dynamic
avalanche models (CAA, 2002a, p. 9-10). While not all of the methods listed above may
be suitable for a particular problem, experts will typically combine several of these
methods in their analysis, weighting the methods in which they have greater confidence.
Thus, application of statistical and dynamic avalanche models is only one part of the
avalanche problem. Both of these methods are explored in this thesis for their applicability

to a dataset consisting of avalanche paths with small vertical fall heights.
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1.11 Objectives and Outline

The objectives of this thesis are:
. to develop models based on existing statistical methods for estimating runout for
short slopes in the Canadian Coast, Columbia, Rocky and Quebec mountain ranges;
. explore the applicability of avalanche dynamics models for modelling short slopes

and develop some practical tools for defining model input parameters;

With regard to the first objective, it should be emphasized that the purpose of this
research is to assess a new dataset for short slopes using existing methods for statistical
runout modelling. Many alternate methods could potentially prove useful to analyze the
dataset, but are considered beyond the scope of this research.

This research provides new tools for avalanche researchers and consultants to better
estimate runout distances for short slopes in Canada. By using existing methods to analyze
the data, these tools will be presented in a form already familiar to practioners and will
hopefully result in easier application of the models. Urban and residential development,
forestry and mining industries may also benefit from the results of this research.

Chapter 2 of this study reviews relevant literature on statistical and dynamics runout
models, and extreme value statistics. Chapter 3 describes the field methods undertaken for
this study, including descriptions of the study areas, site selection, field equipment, survey
procedures and type of data collected. Limitations and sources of error from the field
program are also discussed in Chapter 3. In Chapter 4, statistical models are used to relate
runout distances to terrain parameters. In Chapter 5, a method for estimating friction
parameters for the Leading Edge dynamics model is presented and the applicability of this
model to short slopes is discussed. Chapter 6 presents the conclusions from this study and

suggestions for future research.
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2. LITERATURE REVIEW

2.1 Introduction

This review focuses on models of avalanche dynamics and of statistical runout
estimation, application of extreme value statistics to runout estimation, and the affect of
climate on runout distances. Section 2.2 reviews the extensive literature that exists for
dynamic runout models. The application of statistical methods for estimating runout is
reviewed in Section 2.3. A review of previous work on the relationship between climate
and runout is presented in Section 2.4. The results of the literature review are summarized

in Section 2.5.

2.2 Models of avalanche dynamics

The traditional method for determining runout distances involves selecting friction
parameters as input into a dynamics model, and using this model to simulate the motion of
dense flow avalanches in a particular avalanche path (McClung and Schaerer, 1993,
p. 115). Most dynamics models initiate avalanche movement at the top of the starting zone
(Figure 1.8), with the avalanche material starting at rest, typically in the form of a dense
slab. After initiation of avalanche motion, the avalanche material quickly accelerates down
the slope as a result of gravitational force, with larger dry avalanches having two principle
flow components: dense and powder (Figure 1.8). Frictional forces at the boundaries of
the avalanche material, and internal shear of flow in some models, provide resistance to
avalanche movement. In theory, the frictional parameters in dynamics models are physical
parameters. In practice, their values are based on fitting the models to real avalanches,
resulting in typical ranges of empirical values for the friction parameters. The mass of the
avalanche is assumed to remain constant throughout the avalanche path in early models,
while some more recent models allow for entrainment of additional mass into the front of
the avalanche and deposition of mass from the back of the avalanche in the track and
runout zone. The runout position is defined either as the centre or tip of the mass that is
farthest from the starting zone.

Most avalanche dynamics models output the runout position and a velocity profile of

an avalanche in a path. Some models also provide additional information such as the flow



21
height and width of the avalanche.

Voellmy’s (1955) pioneering work on avalanche dynamics included equations of
avalanche motion that are still the basis for many modern dynamics models. The Voellmy
model describes the movement of the dense flow component of an avalanche as a
turbulent fluid, and assumes that snow deforms freely under shear. This model is based on
a Coulomb dry friction term and a dynamic term proportional to the square of the velocity
(Keylock and Barbolini, 2001). In its simplest form, the fundamental equations from the

Voellmy model for the maximum velocity, v and the runout distance, s are:

vZ = &h (sin P — pcos P) (2.1)

2
\4

* 7 2g (Heosy —sing) + (g /Eh)

where & represents turbulence in the flow and has units of acceleration (m-s™) and p

(2.2)

represents basal friction and is dimensionless. Both of these coefficients are thought to
depend on the shape of the track and the volume of the avalanche, and are assigned values
based primarily on Swiss experience and fitting runout distances to observed avalanches
(Mears, 1992, p. 29). The variable % represents the height of the dense avalanche flow,
is the slope angle and g is the gravitational constant. Avalanche velocities are calculated
segment-by-segment along the path profile, and the avalanche stopping position is
calculated in the last segment where the mass has insufficient velocity to surpass the end
of the segment.

Salm et al. (1990) expanded and refined the Voellmy model based on Swiss
experience and many have used their model extensively for avalanche hazard mapping in
Switzerland (Salm, 1997) and elsewhere. Their model uses the same principles and
assumptions as the Voellmy model, but provides separate formulations for both
unconfined and laterally confined avalanche paths, and uses a modified expression for
runout distance. Also, model inputs such as the initial slab thickness and the friction
parameters are based on Swiss experience and must be extrapolated to other mountain
ranges.

The next important development in avalanche dynamics modelling was the
introduction of the PCM model (Perla et al., 1980), which is a simple extension of the

Voellmy (1955) model. This model makes several important assumptions, including:
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modelling motion at the centre-of-mass of the avalanche; constant mass with no
entrainment or deposition; viscous shear is ignored; and the resistive force terms are
assumed to be proportional to the combined sliding friction and dynamic drag (Mears,
1992, p. 27). This model uses friction coefficients similar to the Voellmy (1955) and Salm
(1990) models, with p representing basal friction and a mass to drag ratio, M/D being
similar to the § parameter in the Salm (1990) model.

The model of Perla et al. (1984), commonly known as the PLK model, described
avalanche motion as a flow of several hundred particles released from a starting position.
This marked a move away from modelling an avalanche as a single mass continuum,
instead modelling avalanche motion as a collection of particles that move randomly and
independently under the influence of gravity and resistive forces at the base, lateral and
top boundaries of the avalanche (Perla et al., 1984). The PLK model used a similar force-
momentum equation to that used in the PCM (Perla et al., 1980) and Salm (1990) models,
with the addition of a random velocity parameter that allows for a range of particle
velocities at each point in the simulation. Entrainment of additional snow particles into the
flow was accounted for by adding one new particle per metre of length. Deposition of
mass from the flow was accounted for by allowing particles to drop out of the flow when
their velocity reached zero.

The NIS model (Norem et al., 1987, 1989) was developed by the Norwegian
Geotechnical Institute (NGI) as a two-dimensional model that simulates avalanche motion
as a granular continuum that behaves as a non-linear, visco-elastic material. This model is
relatively complicated when compared to previous models, with constitutive equations
that include: normal stress, shear stress, pore pressure, effective pressure, velocity,
Coulomb friction, viscosity, cohesion, and the density of the granular material. This model
uses physical input parameters as compared to empirical friction coefficients used by most
other models, yields a velocity distribution with avalanche flow height, and has been
calibrated using field experiments (e.g. Gubler et al., 1986).

Pioneering work in the field of avalanche motion as granular flow was conducted by
Dent (1986) and Savage and Hutter (1989) . The model of McClung (1990) further moved
away from modelling avalanche motion as fluid, instead assuming that dense avalanche

material behaves as a granular material. McClung (1990) derived an expression for
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avalanche velocity that was mathematically similar to the PCM model (Perla et al., 1980),

with several importance differences. First, only one resistance term, p, was assumed in the
model, located at the base of the flow. This resistance term is assumed to increase as a
function of the avalanche position down the path, and consequently varies with velocity.
In this model, p does not explicitly incorporate plowing, entrainment and deposition of
snow but these are implicitly accounted for by calibrating the model with field data
(McClung, 1990). A second resistance term, D, represents turbulent (air/dust) drag at the
top of the flow, but is much less important in the model than basal resistance.

The model of McClung and Mears (1995) further developed the idea of avalanche
flow as a granular material, expanding the simple theory of McClung (1990) into a more
sophisticated model known as the Leading Edge Model (LEM). The LEM was designed
for calculating run-up and runout in the deceleration phase of avalanche motion. Important
aspects of this model include:

« 1initial conditions for incoming avalanche velocity must be assumed

 the stopping position of the avalanche deposit is calculated for the tip of the avalanche,
as opposed to many other models that estimate runout as the stopping position of the
centre-of-mass of the avalanche

« the model estimates the mean deposition depth

+ passive snow pressure is included in the model which indirectly accounts for slope-
angle dependence

« aslope angle correction is applied to account for momentum losses at slope angle
changes

Possibly the most important advantage of this model is that runout is calculated for
the leading edge (tip) of the dense flow which is very important when specifying runout
distances for land-use planning. When compared to centre-of-mass models, the LEM
predicts longer runout distances (McClung and Mears, 1995).

All of the models discussed above have a strong dependence on poorly constrained
resistance terms. Without tranference or good local datasets (e.g. Switzerland), runout
estimates from dynamic models exhibit large variations due largely to the poorly
constrained range of friction parameters. Transference involves using information from

known runout distances in other paths to estimate the friction parameters and consequently
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runout distances for a specific path. Sigurdsson et al. (1998) used length-scale tranference

methods for the PCM (Perla et al., 1980) model, whereby a-angles were calculated as non-
linear functions of the friction parameters, u and M/D. Nearest Neigbour models (e.g.
Buser, 1983; Lied et al., 1995) can also be used for transference in which it is possible to
find the most similar avalanche paths by systematically comparing topographic parameters
and thus estimate friction parameters and runout distances for a specific path.

Many other avalanche dynamics models have been developed, and significant
developments are still occurring. Harbitz et al. (1998) provide an extensive review of
avalanche dynamics models, including some of the more recent models. These include the
VARA model (Natale et al., 1994) a one-dimensional model that takes a hydraulic-
continuum approach to avalanche motion; and hydraulic-continuum models of higher

dimensionality (e.g. Naaim and Ancey, 1992; Bartelt and Gruber, 1997).

2.3 Statistical runout models

The traditional method for determining runout distances since the work of Voellmy
(1955) has been based on using one of the dynamic avalanche models discussed in
Section 2.2. The work of Bovis and Mears (1976), Lied and Bakkehei (1980) and
Bakkehei et al. (1983) introduced a different method for predicting avalanche runout
distances. Their work was based on regression analyses of topographic (terrain)
parameters for a set of avalanche paths in a mountain range, for which the o angle defines
the runout position and is the dependent variable to be determined. Based on an analysis
of 206 avalanche paths in Norway, Lied and Bakkehgi (1980) and Bakkehei et al. (1983)
found that runout distances, or a, could be related to four easily measured parameters: the
B angle (see Section 1.8 for definitions); H, the vertical distance from the starting point to
the low point in a parabola that best fits the path longitudinal profile; 6, the average slope
angle of the top 100 vertical metres of the starting zone, and; y”, the second derivitive of

the polynomial function

y= ax’ + bx +c (2.3)

best fitted to the path profile (i.e. a =f[B, H, 0, y"]). Perhaps the most important result of

this work was the definition the of the B point, a reference point from which to measure
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runout distances that has been used in all subsequent work on statistical runout prediction.

Further analysis of the Norwegian data by Bakkehei et al. (1983) showed that the
variable B could explain most of the variation in the regression equation for a, and that the
a angle could be related to the B angle by the simple expression

a=092B-14° SE=23° R=092 2.4)
where SE is the standard error of regression and R is the correlation coefficient. The
standard error is an estimate that measures the dispersion of observed values about a
regression line. The correlation coefficient is a measure of the strength of the linear
relationship between two variables (Mendenhall and Sincich, 1996, p. 127), in this case o
and B. The coefficient of determination, R” is the square of the correlation coefficient in
simple linear regression, and represents the proportion of the sum of squares of deviations
of the predictor variable about its mean that can be attributed to a linear relationship
between two variables (Mendenhall and Sincich, 1996, p. 134), in this case a and . The
adjusted multiple coefficient of determination, adjusted R?, is similar to R* but takes into
account both the sample size and number of parameters in the regression model
(Mendenhall and Sincich, 1996, p. 192). These terms are defined at this point as they will
be used throughout this thesis.

Subsequent work by Martinelli (1986), McClung and Lied (1987) and Nixon and
McClung (1993) confirmed the applicability of using topographic parameters to estimate
maximum, or extreme, runout distances, and that the B angle is — for most datasets — the
only statistically significant parameter for predicting a. Nixon and McClung (1993) found
that other topographic parameters in their study were not statistically significant and did
not improve their model beyond levels attributable to measurement error in their data.

Research conducted by Mears (1988; 1989) and McClung et al. (1989) found that
the regression equation developed by the Norwegian Geotechnical Institute for avalanche
paths in Norway was not consistantly applicable to mountain ranges in other parts of the
world, and consequently that each distinct mountain range has a unique population of
extreme avalanches that needs to be analysed separately (Mears, 1992, p. 26). This led to
different regression parameters being developed for other mountain ranges, including: the
Purcell, Rocky Mountain and Coast Ranges in Canada (McClung and Mears, 1991; Nixon
and McClung, 1993); Coastal Alaska, Colorado Rockies and the Sierra Nevada in the
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United States of America (McClung and Mears, 1991); the Austrian Alps (Lied et al.,

1995); and mountain ranges in Iceland (Johannesson, 1998).

The work of McClung and Lied (1987) presented an alternative method for
estimating extreme runout, one that is also based on topographical parameters. Instead of
using regression analyses on topographic parameters, McClung and Lied (1987)
introduced the concept of a dimensionless runout ratio and applied concepts from
probability theory and extreme value statistics to analyse their data. McClung et al. (1989)
and McClung and Mears (1991) extended and expanded upon this theory, whereby they
found that extreme runout distances fit an extreme value probability distribution, or
Gumbel distribution (Gumbel, 1958), similar to that used to describe extreme values for
other natural hazards such as discharge from floods. They found that the runout ratio,

Ax / X (Figure 1.9), follows an extreme value distribution with respect to a reduced
variate, or a non-exceedence probability expressed in the form of the equation:

Ax/ Xg =u+b (-In(-InP)) (2.5)
where Ax is the horizontal distance from the 3 point (where the slope first decreases to
10°) to the extreme runout position, Xp is the horizontal distance from the starting position
to the B point, P is the non-exceedence probability or the fraction of runout ratios that do
not exceed a given value, and u and b are location and scale parameters in a Gumbel
distribution, respectively. In this equation, the variables Ax and Xj are determined either
during field studies or from maps, and the variables u and b are determined by regression
analyses for a set of avalanche paths. Rank order statistical methods are used to assess the
significance of the regression (e.g. Watt et al., 1989).

McClung and Mears (1991) presented analyses using the runout ratio method for
several mountain ranges, including: the Canadian Rockies and Purcells; Western Norway;
Coastal Alaska; the Colorado Rockies; and the Sierra Nevada in California. They found
that, for non-exceedence probabilities greater than 0.5, a Gumbel distribution provided a
good fit to their data set of over 600 avalanche paths for each mountain range. Subsequent
analyses provided location and scale parameters for the British Columbia Coast Mountains
(Nixon and McClung, 1993), the combined Madison and Gallatin Ranges of southwest
Montana (McKittrick and Brown, 1993), and the mountains of Iceland (Johannesson,

1998).
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McKittrick and Brown (1993) presented, for the first time, analyses of a dataset that

included mostly shorter slopes, with all the paths surveyed in southwest Montana having a
vertical fall height of less than 553 m (mean of 248 m). All studies prior to this included
data for mostly larger slopes, with a mean vertical fall height of approximately 700 m.
Perhaps the most important result of this work was the definition of the B point as the
location where the slope first decreases to 18°, rather than the value of 10° commonly used
for taller slopes. By defining the location of the B point higher in the avalanche path,
McKittrick and Brown (1993) obtained a better fit of their dataset using a Gumbel
distribution. A possible interpretation of this finding is that extreme avalanches on shorter
slopes begin decelerating on steeper inclines than extreme avalanches on larger slopes a
hypothesis that is explored in this thesis.

Although McKittrick and Brown (1993) offered no physical explanation for the
improved fit of their data for a  point located at 18°, other studies have found that locking
of particles in the avalanche flow begins at slope angles of about 25°, and that large, dry
avalanches are beginning a decelerating phase at this slope angle (Gubler et al., 1986;
McClung and Mears, 1995). Thus, there may be a physical basis for using higher slope
angles for definining the location of the B point, particularly for shorter slopes in which
the avalanche mass may not reach a high velocity (e.g. > 30 m s™') before beginning to
decelerate.

As early as 1987, McClung and Lied (1987) noted that their model likely did not
apply well to short slopes with a vertical fall height of less than 350 m. McClung and
Mears (1991) and Mears (1989) noted the importance of length-scale effects for data from
the Colorado Rocky Mountains and Sierra Nevada Range of California. To investigate
this, McClung and Mears (1991) partitioned data into two somewhat arbitrary datasets,
based on X3 = 1000 m. For the Colorado data, they found that higher runout ratios
(relatively longer runout distances) were associated with Xg < 1000 m, which seems to
support the hypothesis that extreme avalanches on smaller slopes runout proportionately
farther than on taller slopes.

Nixon and McClung (1993) also noted scale effects with the Rocky Mountains and
Coast Ranges of Canada, and partitioned their data for the Rocky Mountains at

Xp = 1500 m and at Xg= 2100 m for the Coast Mountains. Using a non-exceedence
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probability of 0.99 for the Rocky Mountain dataset, they found that runout distances are

15 % higher than the non-partitioned data for Xz < 1500 m and 28 % higher for
Xp> 1500 m. These results cleary illustrate the importance of scale effects in runout
modelling, and indictate that this phenomenon may be even more pronounced for short
slopes.

McClung (2000), combines both temporal and spatial distributions in the prediction
of avalanche runout. This work is based on extreme avalanche runout distances fitting a
Gumbel distribution, as discussed above, and the avalanche arrival rate fitting a Poisson
distribution (McClung, 1999). This model also provides a means of estimating the
probabilistic extreme avalanche width. Although his model framework leaves open the
possibility of using a distribution for runout distances other than Gumbel, his findings are
supported by data from over 600 avalanche paths in eight mountain ranges.

Barbolini et al. (2000) have also presented recent work on avalanche runout
prediction by integrating statistical and dynamics models for five European avalanche
sites. In this paper they propose a method for avalanche hazard zoning that integrates both

statistical and dynamic models and provides a level of confidence in the model output.

2.4 Climatic effects on runout

Avalanche runout is known to be dependent on numerous variables that can be
classified into two main groups: terrain and snowpack (Bovis and Mears, 1976; Mears,
1984). The effect of terrain parameters on runout has been the subject of extensive
research, as discussed in Section 2.3, and has resulted in several statistical models that
relate a to . The type of snow involved in the avalanche and the climatic conditions
leading up to the avalanche are not explicitly included in the analysis, but are intrinsically
included in these empirically derived formulae. Some dynamics models, such as the Swiss
model (Salm et al., 1990), incorporate empirically developed snow depth (slab thickness)
variables for the different climate regions within Switzerland, thus incorporating climate
factors into the runout model.

Because statistical models are designed to be applicable to extreme avalanche
events, it is assumed that, over a long time period, optimal climatic conditions will

develop in each path at least once, and that avalanches will run to extreme runout
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positions in response to these conditions (Lied and Bakkehei, 1980). Despite this, there

are known to be distinct differences in runout characteristics that depend on regional
climate variations (Mears, 1984). Consequently, there is no single model to describe

runout in all avalanche paths, and different models have been developed for different
climatic regions.

Although there is conclusive evidence that climate and snowpack characteristics are
important components of extreme avalanche runout, few studies have attempted to
separate the climate effects from the terrain effects in the runout models or identify
specific climate parameters that may be important in runout prediction. Mears (1984) goes
as far as stating that: “Climatically-induced variables may, in fact, be more important in
determining runout potential than some easily-measured terrain variables”. Mears (1984)
compared extreme runout distances for paths with the smallest o angles found in the
coastal Alaska and central Colorado areas. Although he did not conduct a rigourous
statistical analysis, he found that the mean a angle for the paths in Colorado was lower
than in coastal Alaska and, consequently, the Colorado paths had propotionately longer
runout distances. He attributed this to climatic differences between the two regions, and
provided several reasons, including: the more shallow soft slabs in Colorado quickly
fluidize while the thick, well-bonded Alaskan slabs encounter more resistance along the
path; the lower elevation Alaskan tracks and runout zones often contain wet snow that
absorbs energy from the avalanche mass; and the larger, well developed vegetation in
Alaska serves to dissipate energy more quickly than the open forests in Colorado. While
all of these factors are a result of climatic differences, specific climate or snowpack
parameters were not identified to help quantify the climatic effect.

McClung (2001b) did analyses on climate variables for avalanche paths in western
Canada, including the mean maximum water equivalent in the starting zone, a categorical
Wind Index (Schaerer, 1977) which contributes to snow supply, and several vegatation
parameters. However, this study only addressed avalanche frequency and avalanche size,

not extreme avalanche runout distances.

2.5 Summary

Some dynamic and statistical (topographic) models for avalanche runout were
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reviewed in this chapter. Dynamics models were first developed to model the movement

of dense flowing snow and typically provided information on avalanche velocity and
runout distances. Two main types of avalanche dynamics models emerged from these
studies, including those that model avalanche motion as a turbulent fluid and those that
model avalanche motion as granular flow. These models have become more complicated
through the years as more rigourous computational methods are available for analysis and
the theoretical basis for the models incorporates more complex physical aspects of
avalanche motion. Dynamics models can be used to estimate avalanche runout distances,
but the estimates are highly dependent upon user experience in estimating parameters such
as friction coefficients and snow slab dimensions.

Statistical models were developed that required the input of simple terrain
parameters that can either be obtained from topographic maps or surveyed in the field. By
regression analysis of terrain parameters collected for a set of avalanche paths in a
mountain range, models were developed to provide statistical estimates of runout distance.
Most notably, the B point was defined as the location in an avalanche path where the slope
first decreases to 10°, and it was found that avalanche runout distances could be related to
the angle p measured from the 3 point to the top of the starting zone. Two methods for
developing runout models for a given mountain range emerged from this research: the a-f3
(regression) method and the runout ratio method.

Both dynamics and statistical models for avalanche runout prediction incorporate
regional differences between different mountain ranges. These differences are intrinsically
part of the models and are empirically derived. Although the importance of climatic
effects on avalanche runout has been recognized, only limited research has been

conducted to quantify these effects and their relationship with extreme runout distances.
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3. METHODS

3.1 Study areas

Data for this project were collected at avalanche paths located in the Canadian
Coast, Columbia, and Rocky Mountains and mountain areas of Quebec during the
summers of 2000 and 2001 (Figure 3.1, Table 3.1). Two sites in the Mount Baker area
(Cascade Range) of Washington State are included with the Coast Range paths. Detailed
field studies were conducted by the author at 46 individual sites during the 2000 and 2001
field seasons. An additional two sites located in Quebec (Kangigsualujjuaq and Blanc
Sablon) were previously surveyed by Bruce Jamieson and incorporated into this study.
Thus, a total of 48 sites are included in this study.

Data were collected from four different mountain ranges in order to assess the affect
of the different climate regimes in each range on avalanche runout distances. The Coast
Range is classified as a maritime snow climate, and is characterized by relatively heavy
snowfall and mild temperatures (McClung and Schaerer, 1993, p. 18). The Rocky
Mountain Range is classified as a continental snow climate, and is characterized by
relatively low snowfall and cold temperatures. The Columbia Mountain Range is
classified as an intermountain (or transitional) snow climate, which is a transitional zone
between maritime and continental conditions (McClung and Schaerer, 1993, p. 17-18).
The Chic Choc Range and other sites in Quebec have been classified as an intermountain

snow climate for this study, although they’re relatively close to coastal areas.

3.2 Site selection

Sites were selected in the four study area mountain ranges based on several criteria,
including: vertical fall height; reasonably good access by vehicle and foot; well defined
path characteristics (e.g. starting and runout zones); well defined extreme runout position;
and no run-up on the opposite side of the valley or runout into a water body. These criteria
are discussed in the following sections.

It was considered important to obtain a geographically diverse sample so that the
affect of climate on avalanche runout distances could be studied for the four mountain

ranges. Sixteen sites were surveyed in the Coast Mountains, 10 sites were surveyed in the
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Table 3.1 Study sites and locations

Mountain Range

Location

Study sites

Coast Mountains

Vancouver North Shore
mountains, BC

Mount Seymour

Mount Garibaldi area, BC

Brohm Ridge, Brohm Ridge Col,
Brohm Village West Slope

Whistler, BC

Whistler East Ridge, Flute Summit
NE Ridge, Franz’s Run Cliffs

Goldbridge area, BC

Donnely Creek, Green Mountain

Near the Mount Baker Ski
Area, Washington

Mount Baker Southwest, Mount
Baker Northeast

Coquihalla summit, BC

Zum Southwest Peak, Zopkios
Ridge

Dufty Lake Road area, BC

Blowdown Creek

Near the Apex Mountain
Resort, Penticton, BC

Apex Mountain Main, Apex
Mountain East

Columbia Mountains

Glacier National Park, BC

Schroeder Shoulder

Kootenay Pass, BC

Cornice Ridge North, Power Creek
Ridge, Siwash East Ridge,
Kootenay Pass 1, Kootenay Pass 2

Highway 3a near Retallack,
BC

Stenson Creek Headwall

Near the Whitewater Ski
Area, BC

Hummingbird Pass, Evening
Ridge, Backside Ridge

Rocky Mountains

Kananaskis Country, AB

Black Prince, Shark Mountain,
Quarry Mountain

Banff National Park,
Icefields Parkway, AB

Crowfoot Bumps, Pulpit Pimple,
Hector Ridge North, Hector Ridge
South, Bow Summit

In the Fernie Ski Resort,
BC

Knot Quite

Southwest of Fernie, BC

Harvey Bowl
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Table 3.1 (continued)

Mountain Range

Location

Study sites

Rocky Mountains Near the Lake Louise Ski | Redoubt Mountain, Wolverine
(continued) Resort, AB Ridge

Banff National Park, Bow |Copper Mountain

Valley, AB

Near the Sunshine Ski Wawa Bowl

Resort, AB

Highwood Pass, AB Highwood Ridge
Quebec Mount Hogsback area, Chic | Monte Blanche LaMontagne, Mont

Choc Mountains, QC

Lyell

Mont Jaques Cartier area,
Chic Choc Mountains, QC

Mont Jaques Cartier Saddle, Mont
de la Passe West, Mont de la Passe
East

Northern Quebec

Kangigsualujjuaq

Eastern Quebec

Blanc Sablon

Columbias, 15 sites were surveyed in the Rockies, and 7 sites were surveyed in the Chic

Choc Range or other parts of Quebec, giving a small sample of sites from each range, but

a reasonably large sample size (48 paths) for the combined dataset. The sites vary in

latitude from approximately 48°47' to 51°38' North and in longitude from 65°55' to

123°10" West. Elevations of the starting zones of the paths range from approximately 85 m

to 2500 m above mean sea level. Thus, a geographically diverse sample set was obtained

both in terms of longitude and latitude, as well as in terms of elevation range.

The vertical fall height of the avalanche paths, measured from the top of the starting

zone to the bottom of the runout zone, was a prime consideration in this study. Based on

previous studies (e.g. McClung and Lied, 1987; McKittrick and Brown, 1993) it was

decided that paths with vertical fall heights less than or equal to 350 m would be

considered for the study. However, it was sometimes not possible to estimate the vertical

fall height of the path accurately until the survey was complete, and consequently some

paths were surveyed that exceeded 350 m in height. There was no lower limit criterion for
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vertical fall height, as long as the path had well defined starting and runout zones and a

well defined extreme runout position. Specifically, damage to vegetation in the runout
zone had to be discernable, or the path had to have a historical record of large avalanches.
Practically, few slopes with vertical fall heights of much less than 100 m were found that
met all of the criteria.

Paths were chosen that were reasonably accessible using a combination of vehicle
and foot access. In many cases, road access to the sites was relatively good, usually
requiring less than two hours approach on foot from a highway or secondary road.

Paths were chosen that had well defined starting zones and runout zones. In order to
ensure accurate field surveys, it was critical that the top of the starting zone could be
determined, and that the width of the starting zone could be estimated. Thus, short slopes
with starting zones within densely forested terrain were not considered because it would
be difficult to determine the location of the starting zone in these areas. The runout zone
also had to be well defined so that the extreme avalanche position could be defined. In
most cases, there was no historical data available for the extreme runout position at the
study sites, so vegetation was used to estimate the extreme runout position and estimate
return periods for smaller events in the path. Both channelized (confined) and unconfined
paths were included in this study. Although avalanche behaviour and runout
characteristics can differ significantly between confined and unconfined paths (Mears,
1992, p. 6; Lied and Bakkehgi, 1980), including both in the study made comparisons of
runout for these types of paths possible.

The final criterion was that the avalanche path did not run-up onto an adverse slope
or runout into a water body such as a lake or river. The statistical models that have been
developed for runout estimation are not applicable when the avalanche runs up onto an
adverse slope. This is particularly important when applying a- models, in which
increasing runout onto an adverse slope will result in an decreasing o angle and shorter
runout, whereas the model is based on decreasing a angles being associated with longer
runout distances. Some dynamics models can be used for run-up problems (e.g. McClung
and Mears, 1995), but it was decided to forego the added complication of run-up and seek
sites that did not have this characteristic. Where avalanche paths runout onto water bodies

such as lakes or rivers, the extreme runout position usually cannot be defined from
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vegetation, typically requiring the use of historical records, geomorphological (e.g. Blikra

and Saemundsson, 1998; Boucher et al., 1999) or paleoenvironmental methods (e.g.
Caterino, 1998). Historical records were typically not available for short slopes in the
study area, and the other methods are typically prohibitively expensive. Thus, these paths
were excluded from this study.

Because of the difficulty of finding short slopes that meet all of the above criteria,
when a suitable path was found it was usually surveyed and included in the dataset. By
including sites in the dataset based primarily on the above criteria, biases in the dataset
were reduced with respect to other criteria such as aspect, elevation, steepness, or other
terrain factors. Although the sample is not truly a random sample, it is likely that these

paths give a good representation of short slopes in their respective mountain ranges.

3.3 Equipment

Field equipment used for this study included very simple, commonly used surveying
equipment, including: a fibreglass measuring tape, clinometer, compass, altimeter, hip-
chain, pruning saw, and increment borer. This equipment is described below and is shown
in Figure 3.2.

A 100 m fibreglass tape, commonly known as a tight-chain, was used to measure
slope distance on the ground. The tape was graduated in 0.05 m increments, but was read
to the nearest 0.5 m. Considering variations in ground cover and lateral deflections of the
tape from the avalanche path centreline, the accuracy of the tape is considered to be
approximately £ 2 m per 100 m, or 2 %.

A sighting clinometer (Suunto PM-5/360PC) was used to measure slope angles
between points along the profile. The clinometer is graduated in 1° increments, and was
read to the nearest 0.5°. The accuracy of the clinometer is considered to be & 0.5°.

A magnetic compass (Silva Model 515 Ranger) was used to measure the orientation
of the starting zone with respect to true north. This compass is graduated in 2° increments
and was read to the nearest 1°. The accuracy of the compass is considered to be £ 1°,
although the true aspect of the starting zone can vary significantly, especially when the
starting zone is concave or convex across the slope.

An altimeter watch (Casio Pathfinder) was used to estimate elevations in the starting
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Figure 3.2 Field equipment used for surveying avalanche paths

zone, in addition to using topographic maps. The altimeter was also used as an
independent check for the slope angles and distances obtained with the clinometer and
fibreglass chain. The altimeter is graduated in 5 m intervals, and is considered to be
accurate within 5 m (at best) when properly calibrated to a known elevation on the day of
the survey.

A hip-chain (Fieldranger 6500) was usually used to measure the width of the starting
zone in lieu of using the fibreglass tape. The hip-chain is used to measure distance from a
point by tying a thin string to a fixed object such as a tree branch and automatically
releasing string from a housing unit as one walks away from the object. A calibrated
wheel mechanism located in the box measures the distance walked along the ground as a
function of the amount of string released. The hip-chain is graduated in 0.1 m increments,
and was read to the nearest 1 m. Because of stretch in the string and deflections from the
line of measurement, the hip-chain is considered to be accurate to approximately + 5 m

per 100 m, or 5%.
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A pruning saw was used for vegetation analysis in the runout. The saw was either

used to cut branches to date the age of the branch, or for sectioning small trees to provide
the age of the tree and date specific impacts to the tree using tree-ring analysis (see
Section 3.5).

An increment borer was used to obtain core samples from trees to date the age of
trees and/or impacts from avalanches. An increment borer consists of a hollow, steel bore
that is threaded at one end and has at the other end a cross-piece that provides leverage for
screwing the borer into a tree. Once the bore is inserted into a tree, a steel extractor is
inserted into the centre of the bore, a barbed end grabs onto the tree core near the centre of
the tree, and the core is subsequently removed from the bore by removing the core
extractor from the steel bore.

Other field equipment included standard field data recording materials (notebooks,

pencils, camera, etc.) and safety equipment (radio, bear repellant spray, first aid, etc.).

3.4 Survey procedures

All avalanche paths in the dataset were surveyed from the approximate top of the
starting zone to the interpreted end of the extreme runout position in the runout zone. The
paths were surveyed using a fibreglass chain and clinometer (Figure 3.2). Two surveying
methods were used depending on the number of people in the survey. When two people
were surveying the path, the slope was surveyed in sections, with each section
representing a segment of approximately equal slope angle. The chain was extended
between the two field workers to obtain the slope distance, and the average slope angle
was obtained by one worker taking a clinometer reading at eye level on the other worker.
Typically, measured segments varied between 10 m and 25 m in slope length, and there
were typically between 10 and 25 segments per path.

When there was only one field worker, the fibreglass chain was extended down the
slope to it’s full length of 100 m. The distance from the top of the starting zone was
measured at each point corresponding to a notable change in slope angle. The slope angle
was measured with the clinometer from these points in both the upward and downward
slope directions by sighting on a feature of approximately equal height to the worker (e.g.

a location on a tree or boulder), or by approximating a height equal to the surveyor’s
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upslope and downslope of the surveyor. The second method does not give as accurate a

slope angle reading as when there are two workers. However, the average slope angle for
each segment was measured at both endpoints and averaged, giving reasonably good
estimates (accuracy of approximately 1°). Additionally, elevation readings were made at
each point using an altimeter, which provided a secondary check on the slope angle and
distance readings using simple trigonometric functions.

The position of the extreme avalanche runout for each path was deduced from
vegetation damage or historical records. Similar to earlier studies (e.g. McClung and
Mears, 1991; McKittrick and Brown, 1993), the goal of the runout survey was to identify
the location of the “100-year” return period event, commonly referred to as the “extreme”
runout position. However, the true return period for the extreme runout likely represents
return periods of 30 to 300 years, introducing unavoidable random variation in the data
(McClung and Mears, 1991). The cores obtained using the increment borer or sections cut
with a saw were used to date trees in the runout zone using common plant
dendrochronology procedures (e.g. Burrows and Burrows, 1976).

In some cases, the frequency of avalanches with differing return periods was
observed as a series of steps in the ages of vegetation, commonly referred to as trimlines.
In these areas, younger trees were observed in the areas affected by more frequent
avalanches, while older trees grew in areas affected by larger avalanches with longer
return periods. Dating the mature timber at the edge of the extreme runout position gives
an approximate lower limit for return periods in this area, while younger trees and specific
types of tree damage in the runout zone allow one to determine the relative frequency of

smaller avalanches in the path.

3.5 Vegetative indicators of runout

Damage to trees and shrubs in avalanche paths are the result of the snow and
entrained debris impacting the vegetation or from the associated wind blast which
sometimes accompanies large avalanches (Hansen-Bristow and Birkeland, 1989)
(Figure 3.3). The vegetation responds to these impacts in different ways and is sometimes
completely destroyed. Types of vegetation disturbance that can be used to date the

frequency or extent of avalanches include: variation in tree growth rings or types of
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reaction wood, tilting, scarring,

growth curvature or stem
indentations, stem breakage, branch
trimming or breakage, tree burial or
root exposure, tree removal, and
tree succession. All of these

disturbances except for tree

succession are evident on

5 L. SPET =

Figure 3.3 Vegetation damage caused by a large individual trees, while tree
avalanche. Note large amounts of woody debris succession is an indication of the

carried and deposited by the avalanche
response of an ecosystem to

avalanche impacts (Hansen-Bristow and Birkeland, 1989). Burrows and Burrows (1976)
and Hansen-Bristow and Birkeland (1989) provide extensive reviews of procedures using
evidence of vegetation impacts for dating avalanche events. The methods used for this
study are summarized below.

Dendrochronology is the method whereby tree rings within the trunks of trees can be
counted to determine the age of a tree as well as date climate or avalanche impact events.
A set of dark and light bands or tree rings indicate one year of growth, with the light band
representing the “earlywood” grown during the spring through fall, and the dark band
representing the “latewood” grown through the end of the growing season (Hansen-
Bristow and Birkeland, 1989). These rings can be counted on a core or section to
determine the age of a tree (Figure 3.4).
Advanced methods of dendrochronology
use tree rings to relate tree growth to
changes in climate or other ecological
conditions (e.g. fires, impacts, disease)
and provide specific dates for these
events. These advanced methods were
not used in this study.

Downslope tilting can occur when

' a tree is impacted by an avalanche
Figure 3.4 Tree rings in a sectioned tree
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Figure 3.5 Tree that has responded to Figure 3.6 Large tree impacted by two

avalanche impact by growing upslope, up- smaller trees in avalanche flow showing
righting itself to the vertical (B. Jamieson flagging of lower branches (B. Jamieson
photo) photo)

(Figure 3.5). In response to this tilting, the tree will usually undergo a curving process to
re-orient the upper part of the tree in a vertical position. Reaction wood, a type of wood
that grows in reaction to a disturbance, can be observed on the downslope side of the tree
where the tree is curving to a vertical position. By counting rings above and below the
point of curve, the date of an impact may be estimated.

Scarring occurs when debris entrained within a flowing avalanche (e.g. rocks, trees
or wood debris) impacts a tree (Figure 3.6), subsequently removing some of the bark and
possibly wood. Avalanche debris typically impacts the upslope side of the tree, but may
also impact the side of the tree. Rockfall may result in similar scarring to that caused by
avalanche impacts, and may be difficult to differentiate in the field. After a tree is
impacted, the tree responds by eventually covering the scar over with wood or bark of a
younger age than the surrounding wood or bark. Wood of different ages in scarred areas

may be observed in the field, particularly in cross-section, and the age of the impact can



42
be dated by counting the annual growth rings

from the location of the unaffected wood.

Flagging, also known as branch trimming,
is common in parts of an avalanche path affected
by dense flow, although powder avalanches and
air blasts can inconsistently result in removal of
. branches (Figures 3.6 and 3.7). Typically,
flagging will be evident on the upslope side of
the tree, but may also be evident on the sides.
Larger avalanches may also break the trunk of a
tree or remove tree tops when the avalanche

mass becomes airborne. Trees that survive

breakage of branches or the trunk may continue

CSESNEREETES. to grow new sprouts which grow vertically
Figure 3.7 Flagging of tree branches

at the edge of an avalanche path upwards. The age of these sprouts can be dated

either by core sections or by counting branch
growth tiers, and the approximate date of the impact to the tree can be determined. There
may be a lag time from when the damage occurred and growth initiated, and this needs to
be accounted for when interpreting the age of a sprout. This lag time can be several years,
depending on the growing conditions at the site. Flagging may also be used to
approximate depth of flow for an avalanche, since the lower limit of the height of the
undisturbed branches from the ground should relate to the depth of the dense, avalanche
flow.

When trees are removed from an avalanche path, gradual succession of trees on the
path will occur. Thus, there may be a younger age class of trees within the central part of
the avalanche path and several different age classes of trees on the margins of the path.
The boundaries between these age classes are known as trimlines (Figure 3.8). By
determining the age of the oldest trees on the avalanche site, an approximate minimum
time since a major avalanche can be deduced. Dating the trees in each trimline may
provide an estimate of return periods for major avalanches in a path.

Accumulations of trees, branches and rocks in the runout zone may indicate the



Mature forest (age class/return perlod
approximately 80-100 years)

New tree sprout
(approx 5 years old) ’

Broken tree stem [

Figure 3.10 New tree growth growing vertically from broken tree
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extent of large avalanches (Figure 3.9). Although branches will decay in a short period of

time, large trees will remain on the site for a long period of time, particularly cedar trees.
Soil and rock deposits will also be visible on the site for long periods of time, typically
until obscured by vegetation. New trees will often grow vertically from tree debris or
broken tree stems (Figure 3.10), giving an approximate date since a major avalanche.
Areas where trees are lying downslope in the same direction are also good indicators of

avalanche activity.

3.6 Description of data

In addition to the avalanche path survey data, various other data were collected to
describe each avalanche path. These data categories are shown in Table 3.2. An example
of the field notes for the Hector Ridge South path and a profile for the Schroeder Shoulder
path are included in Appendix A and B, respectively.

Detailed descriptions of each of these data categories will be provided in the
subsequent sections of this report as each is used in the analyses. The sections below will
provide a summary of the data categories.

Each path was assigned a unique name and Path Identification (ID) number. Where
a path had a known name, this was adopted for the path. Otherwise, a unique name was
assigned based on the path’s geographic location. The Path ID number was assigned using
a letter and number combination, whereby the letter designates the mountain range in
which the path is located (i.e. R for Rockies, W for (West) Coast, C for Columbias, Q for
Quebec and Chic Choc mountains) and the number identifies the order in which the paths
were surveyed in each range. The date that each path was surveyed is also shown.

Survey data was collected in the form of slope angle and slope distance between
points, as discussed in Section 3.4. These values were translated into an x-y coordinate
system that will be discussed later in this thesis.

The measured alpha and beta angles were slope angles measured from the horizontal
by sighting back to the top of the starting zone from the extreme runout position and the
location where the slope angle first reaches 10° in the runout zone, respectively. For some
paths, these angles were not recorded either because the surveyed path did not reach a

slope angle of 10° or the top of the starting zone was not visible from the runout zone.
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Table 3.2 Data collected for each avalanche path

Data category

Description

Path ID Identification number for each path (e.g. R1 for path 1 in
Rockies)
Path name Descriptive name for each path, either pre-existing or assigned

Date surveyed

Date path was surveyed in field

Survey data

Survey data, including slope distance and angle between points
for each segment

Measured a-angle

Angle measured from runout position to top of starting zone

Measured p-angle

Angle measured from 10° slope angle point on path to top of
starting zone

Starting zone data:

« Average inclination
» Aspect

Elevation

+ Average width

» Topography

Average slope angle measured in upper part of starting zone
Aspect typically measured in the centre of the starting zone
Elevation of the top of the starting zone

Width of the upper part of the start zone

Categorized topography (e.g. linear, convex, concave)

Wind index

Index relating the position of the starting zone to drifting snow
potential based on a five-class system

Bottom of runout zone
elevation

Elevation of extreme runout position in runout zone

Surface roughness

Surface roughness in avalanche path, measured in metres

Degree of confinement

Degree of confinement between track and runout zone (e.g.
gully, unconfined)

Runs out in forest

Location of extreme runout position with respect to dense forest

Additional information

Any other pertinent information

Several measurements were made in the starting zone to obtain an average slope

angle in the starting zone. This angle can have a large degree of variability depending on

the configuration of the starting zone.

The starting zone aspect was measured in several locations in the central to top part

of the starting zone to obtain an average value. Measurements were made using a

magnetic compass adjusted for local declination.

The elevations of the top of the starting zone and the bottom of runout zone were

measured using a calibrated altimeter and were compared to a topographic map for
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accuracy.

The average width of the starting zone was measured at the top of the starting zone,
and is an estimate of the maximum width of avalanche that could initiate within a
particular avalanche path. The boundaries are typically defined by either a topographic
feature (e.g. gully sidewall, rock band) or a vegetative feature (e.g. dense forest).

The topography of the starting zone was described qualitatively, and classified as
one of several general categories. These categories include: linear (planar) slope; concave;
convex; complex; and gully. More rigourous categorizations of the topography have been
applied in other studies (e.g. McClung, 2001b) but it was decided that simpler categories
would suffice for this study given the relatively small area of the starting zone for most of
the surveyed paths

The snow supply available for each avalanche starting zone was described
qualitatively in the field and then categorized according to the five-part Wind Index
(Schaerer, 1977). This scale describes the access of the avalanche starting zone to drifting
snow. These categories are summarized as (Schaerer, 1977): (1) starting zone completely
sheltered from wind by a surrounding dense forest; (2) starting zone sheltered by an open
forest or facing the direction of the prevailing wind; (3) starting zone an open slope with
rolls or other irregularities where local drifts can form; (4) starting zone on the lee side of
a sharp ridge; and (5) starting zone on the lee side of a wide, rounded ridge or next to a
large open area where large amounts of snow can be moved by wind.

The ground surface roughness is an approximate measure of the height of
irregularity in the ground surface, excluding vegetation. Features such as stumps and
logging slash were included in surface roughness in areas where forest harvesting had
occurred. Ground surface roughness was estimated in the field in metres, and classified in
terms of the following three categories: (1) low ground surface roughness, with <1 m
relief; (2) moderate ground surface roughness, with 1-2 m relief; and (3) high ground
surface roughness, with > 2 m relief (McClung, 2001b).

The degree of confinement defines the relative confinement of the path between the
starting zone and the track. This is important since confined avalanche paths may create
higher velocities than unconfined avalanche paths (Lied and Bakkehoi, 1980), although

higher friction in confined paths may negate any such effect. The degree of confinement
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was described qualitatively in the field and each path was included in one of four

categories: (1) unconfined; (2) partially confined; (3) strongly confined; and (4) gully.
The variable termed “runs out in forest” describes whether or not it is believed that
the extreme runout position is located within mature timber, downslope of any obvious
trimlines, or is within open, treeless terrain. This can be important since it differentiates
between paths where the avalanche flow comes to a stop in un-forested terrain primarily
due to frictional forces at the base of the avalanche flow forces from those where the
avalanche flow comes to a stop primarily because of frictional forces from impacts with
mature trees. The affects of forests on avalanche runout distances is a complicated subject
which is currently the focus of several other studies (e.g. McClung, 2001b; Bartelt and
Stockli, 2001; Weir, In Press 2002). The paths were included in one of two categories: (1)

runs out in forest; and (2) does not run out in forest.

3.7 Limitations and sources of error

It is inevitable that numerous sources of error were introduced into this study during
the collection of data for the paths. Limitations and sources of error are discussed in this
thesis where they are considered to have an important effect on the results. Some of the
error sources in this study have been described in previous sections of Section 3, primarily
with respect to errors introduced during the field survey (Section 3.3). Further discussion
is provided below.

As discussed in Section 3.2, biases were introduced into this study when defining
the criteria that each site had to meet for inclusion into the dataset. The sample of short
slopes used in this study is not truly a random sample since each site had to meet criteria
such as the vertical fall height of the path and reasonable vehicle and foot access, criteria
that were constrained by geographical factors. Biases associated with factors such as
aspect, elevation, steepness, vegetation type are assumed to be limited. This is due to the
limited number of sites that were found to meet the basic criteria, so that when a suitable
site was found it was usually included in the study regardless of the other factors.

The majority of measurement error in this study came during the field survey of
each path. Rather simple surveying techniques were used during this study that introduced

instrument errors into the data. The errors associated with each surveying instrument and
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surveying techniques were discussed in Sections 3.3 and 3.4. The most important

surveying errors are likely associated with distance measurements using the tight chain
(i.e. 2 m per 100 m, or 2 %) and the clinometer which has an accuracy of + 0.5°, which is
negligable in the horizontal direction, but translates to an error of approximately 2 m per
100 m, or 2 %, in the vertical direction.

The other important surveying error lies in determining the location of the extreme
runout position, as discussed in Section 3.4. The choice of the “100-year” avalanche event
as the “extreme” runout position, while somewhat arbitrary, has come to be accepted as
the definition of “extreme runout”, particularily when applied for engineering purposes.
Because of the difficulty in using vegetation to define the location of the 100-year
avalanche event, the true return period of the extreme runouts may vary from 30 to 300
years, but is probably more in the range of 30 to 100 years for the sites surveyed. Also, it
is assumed that extreme runout positions for short slopes include only vegetation impacts
from dense flow avalanches. It is possible that in some of the larger paths, impacts to
vegetation may have also resulted from powder avalanches or air blasts associated with
the dense flow. These impacts can exceed the location of the runout position of the dense
flow.

Another limation may be that trees in some areas may only reach a maximum age on
the order of 100 years while in other areas trees may not reach such an age due to
environmental factors such as fires, insects or disease. For example, it may be difficult to
determine the runout associated with a 100-year avalanche event in areas where trees only

attain a maximum age of 50 years.
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4. STATISTICAL RUNOUT MODELS

However big floods get, there will always be a bigger one coming;

so says one theory of extremes, and experience suggests it is true.

President’s Water Resources Policy Commission, p. 141

4.1 Introduction

Extreme snow avalanche runout distance is a function of both terrain and climatic
variables. Some previous studies have shown that avalanche runout in certain mountain
ranges depends strongly on terrain parameters, particularly the 3 angle. In Section 4.2, the
variables used in this study are defined. Section 4.3 presents the statistical distribution and
variability of terrain parameters collected for this study. Models are developed to estimate
runout distance for short slopes using the runout ratio and multiple regression methods in
Sections 4.4 and 4.5, respectively. The purpose of these models is to be able to estimate
extreme runout distances for short slopes as a function of either the runout ratio, Ax/Xg, or
the alpha angle, a. These models are compared in Section 4.6, and Section 4.7 provides a

summary of Chapter 4.

4.2 Variable definitions

As shown on Table 3.2, various categories of data were collected for the short slopes
in the dataset. These data can be represented as 25 distinct terrain variables, including 3
categorical variables, 2 ordinal variables and 20 variables with interval or ratio properties.
The variables used in the following analyses are shown on Table 4.1. The naming
conventions for variables are based on previous studies (e.g. Lied and Bakkehei, 1980;
Bakkehei et al., 1983; McClung and Lied, 1987), but have been modified where
considered appropriate for this study. Some key terrain variables were previously defined
in Section 1.8, while the remainder are defined below and are shown graphically in
Figure 4.1.

The delta angle, 9, is defined by sighting from the extreme runout position to the 3

point, with the angle measured from the horizontal. This variable is a measure of the
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Fitted parabola y=ax2+bx+c

with radius of curvature, y”

[0 point

N RN Extreme runout
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[

Figure 4.1 Geometry of example avalanche path showing most terrain variables used in
the analyses. x-y coordinate system is shown with origin at lower left of figure.

average slope angle in the runout zone. It may be noted in Table 4.1 that unusually low

values of 6 were obtained in several of the paths (e.g. Oy = -49.4° using a  point at 10°).

This can be explained by the fact that the location of the  point was found using fitted

parabolas and, in several cases, the 3 point was located far downslope of the observed a

point (the extreme runout position observed in the field). Thus, these paths are assigned

negative values of 9, and these may be large if the f point was located far downslope of

the a point. Similarily, very low values of Ax (e.g. Qo = -723 using a 3 point at 10°) can be

observed in Table 4.1, and reflect the same reason as for unusually low values of 5. These

observations illustrate that the choice of the 3 point at 10° may not be well suited to this

dataset. As discussed later in this chapter, an alternate B point is proposed for where the

slope first decreases to 24° in the path profile.

The runout ratio, Ax/Xjp, is a dimensionless variable that relates horizontal distances

Ax and Xjp to the reference slope angles a, B and 6 (McClung and Mears, 1991):

Ax _ tanf —tana

X, 4.1

tano — tand
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The alpha to beta angle ratio, o/, is a dimensionless ratio of the two reference

angles, o and f.

The vertical path displacement, H,, is the vertical distance measured from the top of
the starting position to the extreme runout position.

The vertical displacement to the B point, Hj, is the vertical distance measured from
the top of the starting position to the § point.

The slope length of the path, So, is defined as the distance measured in the field
along the path segments from the top of the starting position to the extreme runout
position.

The terrain profile for each avalanche path was represented by fitting the polynomial
parabolic curve

y=ax’+bx+c 4.2)
to the surveyed profile between the top of the starting position and the extreme runout
position. The x-y coordinate system used for defining Equation 4.2 for each path is shown
in Figure 4.1. This parabolic curve provided an excellent fit to the surveyed avalanche
paths using regression techniques, with coefficients of determination, R?, greater than 0.98
for every path in the dataset. The second derivative of the polynomial curve
(Equation 4.2), y", has a value of 2a and indicates the radius of curvature of the path
profile (Lied and Bakkehei, 1980).

The vertical displacement to the bottom of the parabola, Hy, is defined as the vertical
distance measured from the top of the starting position to the lowest point on the fitted
parabola (Equation 4.2), the location where the first derivative (slope) of the polynomial
curve, ), is zero.

The variable Hy)" is the product of Hj and y" which, according to Lied and
Bakkehei (1980), makes the path profile independent of the total vertical fall height, and
thus serves as a dimensionless scale parameter.

The terrain profile variable, TP, is an ordinal variable that is related to the radius of
curvature, )", but accounts for the very abrupt change in curvature associated with hockey-
stick profiles (Figure 4.2). A value of 1 represents a slope with a nearly linear transition
from the track to the runout zone; a value of 2 represents a path with a concave parabolic

shape and a relatively smooth transition from the track to the runout zone; and 3 represents
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(1) Linear (planar) (2) Concave parabola (3) Hockey-stick profile

Figure 4.2 Examples of terrain profile types used for defining the TP variable

a path with a hockey-stick profile. A hockey-stick profile describes path profiles where
there is an abrupt transition to a slope at or near 0° in the runout zone (Martinelli, 1986).
This type of profile may be commonly found where a steep slope meets a gently sloping
or flat alluvial plain in the valley bottom. An example of a path in the short slope dataset
with a hockey-stick profile (Schroeder Shoulder) is included in Appendix B. Paths with
hockey-stick profiles were common in this dataset, with 10 of the 48 (21 %) surveyed
paths being classified as hockey-stick profiles. There were 8 (17 %) paths defined as linear
(planar) and 30 (62 %) paths defined as concave parabolas.

Topography, 7, is a categorical variable that describes the topography within the
starting zone. There were 17 (35 %) starting zones classified as linear, 9 (19 %) classified
as concave, 14 (29 %) classified as convex, 2 (4 %) classified as complex, and 6 (13 %)
classified as gullies. Concavity and convexity are defined in the downslope direction.

The degree of confinement is a categorical variable that defines the relative
confinement of the path between the starting zone and track. There were 27 (56 %) paths
classified as unconfined, 16 (33 %) as partially confined, 1 (2 %) classified as confined,
and 4 (9 %) classified as gullies.

The categorical variable “Runs out in forest” describes whether or not the extreme
runout position was observed within a mature forest, downslope of any obvious trimlines,
or was within open, relatively treeless terrain. Eleven (23 %) paths were classified as
“runs out in forest” (1), and 37 (77 %) paths were classified as “does not run out in

forest” (2).
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4.3 Statistical distribution of variables

Descriptive statistics for the data are shown in Table 4.1, including the mean,
standard deviation, median (Q,), lower (Q;) and upper (Qs) quartiles, minimum (Q,) and
maximum (Qs) values. Table 4.1 includes two separate sets of statistics for variables that
depend on the defined location of the B-point. Similar to previous studies, descriptive
statistics are provided for a B point defined as the position where the slope angle in the
avalanche path first decreases to 10°. For reasons that will be explained in Section 4.3,
descriptive statistics are also provided for the paths with the 3 point located where the
slope angle of the path first decreases to 24°.

A total of 48 avalanche paths were surveyed for this study, 46 of which are included
in the following analyses. Two paths, Mont Blanche LaMontagne located in the Chic
Choc Range of Quebec and Blowdown Creek located in the Coast Range of British
Columbia, were rejected on the basis that the paths did not reach a slope angle of less than
28° upslope of the interpreted location of the extreme runout position. The commonly
accepted lower limit for dry snow avalanche initiation within the starting zone is between
25° (McClung et al., 1993, p. 92) and 28° (Gubler et al., 1994). At these slope angles,
large snow avalanches should either be accelerating or attaining a steady velocity, not
decelerating. According to this definition, these two paths have extreme runout positions
within their respective starting zones and were consequently rejected for further analysis
and excluded from the descriptive statistics. McClung (2001a) would classify these paths
as continuously steep paths with no p point in the runout zone, which fits one of his
discussed limitations of empirical models.

The normality of the 21 variables (excluding four categorical variables) is assessed
by comparing the distribution of data to the expected normal distribution using the
Kolmogorov-Smirnov (K-S) and Lilliefors tests of normality (Table 4.2) (Neave and
Worthington, 1988, pp. 100-101, 149-156). The hypothesis of normality is rejected at the
1% level (p <0.01) for 12 of the 21 variables based on the Lilliefors test of normality. The
remaining 9 variables can be considered normally distributed data, including: a, B, o/p, Hy,
X, Xp, Ax/Xp, So, and Hgy". It is important to note that both o and Ax/Xp can be considered
to be normally distributed variables since they are used as response variables in the

models developed in Sections 4.4 and 4.5



56

PIOq Ul poxIewr d1e [()°() <  SIOJAI[[I'] YOIYM I0J SMOY

10°0> 10°0> 1+€°0 90 1T 9F (e1ep [eUIPIO) d I O[JOIJ UILLIS ]|
100> 10°0> LSTO 06 86 9F (W) A\ ‘9UOZ 11e)S JO TIPIA]
100> 500> 6070 Tl g€ 9F (18P [BUIPIO) JA\ “XOPUJ PUIA]
100> 10°0> LSTO 0 S0 9% (W) YS ‘ssouysnor ooeyIng
500> 0T°0< SET°0 609 08¥1 | 9t (W) AS[F 7Y ‘UONLBAJ[D SUOZ Jnouny|
10°0> 0T°0> $91°0 0¥S €LLT | oF (W) AS[F ZS “UODEBAJ[D SUOZ }1e}S
100> 01°0> S81°0 €11 6€1 9F (o) 100dsy “poadse auoz 11e)s
01°0> 07°0< 7o 0°S €8¢ | o9 (o) @ ‘TONBUIOUT QUOZ JIB)S
07°0< 07°0< ¥L00 X)) €e0 | or . drgoad yyed 1oy 1poumrered spedg
10°0> 10°0> 1+2°0 2000 2000 | o | (,Lw),d uonouny odofs ayj JO SAIBALIOP PUOIAS
07°0< 07°0< 780°0 €ST s 9% (w) o5 “yred yo yysuoy adofg
07°0< 07°0< 660°0 (1744 Ivb 9% (w) X “3oue)sIp [EIUOZLIOY [E)O0 ]
010> 07°0< 1210 991 91z | 9t (w) O “ejoqered uo jurod MO[ 0} JYSIAY [EITLIOA]
07°0< 02°0< £€80°0 0zl €4 9% (wr) *f ‘uonisod ynouna 03 3YSY [BINIIA
07°0< 07°0< 780°0 Sy 97 | 9¥ (o) 0 “d1sue eydyy|
10°0> S1'0> vLT0 Ll IS1 9% () XV “oue)SIp Jnouny|
07°0< 07°0< SO1°0 9L1 067 9% (w) 9y yurod ¢ 03 yoeaa [eyuozrioy
S10> 0T°0< vI10 STl 061 9F (w) 97 “yutod ¢ 0 JyS1oY [EONIIA
07°0< 07°0< L80°0 08S°0 Lo | or urw) Ty vy ‘ones ynouny|
07°0< 07°0< 6L0°0 o 180 | 9¢ onex /o
10°0> 070> ¥91°0 6 ISt | 9% (o) Q “9[3ue B2
07°0< 02°0< 9L0°0 8T 87 | o (o) d “d1sue e1ag|
4 a a P UOHEIASD UBdIA u dlqere A
SI0JaI[[I'] S-M pIepuelg .

(¥ 1 paurfop jurod ) $a]qDLIDA UIDLID] 40f §IS2] (JIDULION 7 F 2]GD]




57
4.4 Runout ratio method

4.4.1 Introduction

The objective of the section is to develop empirical formulas to estimate the extreme
runout position for avalanches within the four mountain ranges represented in this study.
The hypothesis is presented that, similar to the findings of previous studies (e.g. McClung
and Lied, 1987; McClung and Mears, 1991), a set of runout ratios from a mountain range
conforms to an extreme value distribution, specifically a Gumbel distribution. It is further
postulated that, because the terrain scale and climate effects between ranges may be
relatively weak for a dataset comprising short slopes, a common model may be developed
to represent all four mountain ranges and climatic effects assessed.

Section 4.4.2 describes the statistical methods used to develop models based on the
runout ratio. Section 4.4.3 applies this method to develop one runout ratio model for data
from all four mountain ranges. In Section 4.4.4, the runout ratio method is applied
separately to the four different mountain ranges to compare the results with the combined
range model. Length-scale effects are assessed in Section 4.4.5. Residual analyses are
conducted for the proposed models in Section 4.4.6. Section 4.4.7 summarizes the results

of the models developed in Section 4.4.

4.4.2 Description of the runout ratio method

McClung and Lied (1987) showed that a Gumbel distribution in the form,

P=exp- %xp - %‘W% (4.3)

provides a good model for extreme avalanche runout distances. In this model, the runout
ratio, Ax/Xg, is the continuous random variable, « and b are the location and scale
parameters, respectively, and P is the non-exceedance probability (i.e. 0 <P <1). A
chosen value for P represents the runout ratio for which P x 100 % of the values in the
dataset will not exceed that given value. The above expression can be re-written as:

(DxX/X g )p =u=bIn(=In(P)) (4.4)
where the term -In(-In(P)) is often called the reduced variate. By assigning appropriate
non-exceedence values P for each runout ratio in the dataset based on their rank order, it is

possible to solve for # and b using least squares linear regression techniques.
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In order to define non-exceedance values for each runout ratio, the commonly used

procedure is to rank the runout ratios and use one of the various forms of plotting
positions to define the values for P (Watt et al., 1989, p. 55). Runout ratios in the dataset
are ranked in increasing order such that:

(Ax/ Xg), <(Ax/Xp); <(Ax/ Xp)y (4.5)
where N is the number of paths in the dataset and 1 <i < N.

McClung and Mears (1991) provide an extensive review of plotting position
equations commonly used for small datasets. Based on this review and subsequent studies,
it is apparent that the choice of the plotting position equation is not of great importance
except when the focus of attention is on the one or two highest points in the dataset (Watt
et al., 1989, p. 53). For this analysis, Hazen plotting positions are used (McClung and

Mears, 1991):

i-0.5
P= =1,2,.,N ,
=y i (4.6)

It should be noted here that in Section 4.3, the runout ratio, Ax/Xj, was shown to be
normally distributed. Although analyses could be conducted treating the runout ratio as a
normally distributed variable, the hypothesis that a Gumbel distribution provides a good
fit to the runout ratio data will be explored in the following sections. This method is
applied using methods similar to those developed for estimating runout distances in

previous studies.

4.4.3 Runout ratio model for combined mountain ranges

Figure 4.3 shows the runout ratio for the combined mountain ranges plotted as a
function of the reduced variate, -In(-In(P)), using the conventional definition of the 3 point
located where the slope angle first decreases to 10° along the path profile. The linear
regression line fit to the 46 data points has a coefficient of determination of R* = 0.88 and
a standard error of SE = 0.094. Since the variables on both the horizontal and vertical axes
are increasing functions of the runout ratio, a good fit of the regression line to the data is
expected and only high R* values (e.g. R* > 0.95) indicate a good fit to a Gumbel
distribution. While the central part of the line provides a reasonably good fit to the data,

the higher and lower values of runout ratio are poorly fit by the regression line. This
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Figure 4.3 Runout ratio fitted to an extreme value (Gumbel) probability distribution for 46
avalanche paths in the combined mountain ranges. § point defined at 10°.

would be expected considering that many of the paths did not reach slope angles of 10° in
the runout zone. The regression line has similar characteristics to that developed by
McKittrick and Brown (1993) for the mountains of southwest Montana, in that there
appears to be a “flattening” of the data at higher values of the runout ratio and a
“steepening” of the data at lower values of the runout ratio. This “flattening” of the data at
the upper-right end of Figure 4.3 is known as a “heavy-tail” and indicates that the runout
ratio increases only slightly for reduced variates approximately greater than three, which
corresponds to a non-exceedance probability of 0.95. A Gumbel distribution would only
provide a good fit to the data if the extreme (high P) values in the dataset fell on or near
the regression line, indicating increasing runout at higher non-exceedance probabilities.
Although alternative distributions may be used for analyzing the data shown on
Figure 4.3, it is the intention of this study to apply previously developed methods to the
data. As an example, an Extreme Value Type II, or Frechet, distribution (Watt et al., 1989)
provides a better fit to the data with runout ratios exceeding zero than the fit shown for a
Gumbel distribution (Figure 4.3). Fitting such a distribution to the data would require a
transformation, or shifting of the y-axis, to allow for the inclusion of all of the data (i.e. In

[Ax/X] is defined only for Ax/Xp, > 0). Also, a better fit of the data is obtained when the
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data is censored at lower values of P, similar to the findings of McClung and Mears

(1991) who censored their data at P = ¢”'. Censoring the data in this manner results in a
less than ideal subset of data (n = 29) for the analyses. McClung and Mears (1991) also
explored the use of log-normal distributions for their data but found the “extreme value
distribution to be as good or better than other ones and consequently recommend its use
for the least-squares procedure”. In keeping with existing methods for statistical runout
modelling, subsequent analyses are conducted by exploring the use of alternate definitions
of the B point and using existing statistical methods.

Based on the poor fit of the regression line to the data with the 3 point defined at
10°, additional linear regressions were conducted by varying the B point definition from
10° through 27°. McKittrick and Brown (1993) found that using a reference point of 18°
provided a better fit to their data, which included mostly shorter slopes. Although they did
not develop a physical basis for this definition, there is some basis for using a § point as
high as 25°, since this is where large, dry avalanches begin a deceleration and compressive
phase (McClung and Mears, 1995). Figure 4.4 shows the results of the fit of regression
lines to the data for varying 3 points from 10° through 27°, and that the best fit of the data
to a Gumbel distribution occurs when the 3 point is defined at 24°. Using this definition of
the B-point, both the R? is maximized at 0.98 and the standard error, SE, is minimized at
0.080.

Figure 4.5 shows the runout ratio for the combined ranges plotted as a function of
the reduced variate, -In(-In(P)) with the  point defined at 24°. The linear regression line
fit to the 46 data points has a coefficient of determination, R?, 0f 0.98 and a standard error
of 0.080. This is a large improvement over the model with the § point defined at 10°, and
has a good fit to the data using rank order statistics. The resulting regression equation
relating the runout ratio to the non-exceedence probability is:

(Ax/Xy)p =0.494 - 0.441 In(-In(P)) (4.7)

This regression equation (Equation 4.7) is hereafter referred to as the 4-Range model.

4.4.4 Runout ratio model for individual mountain ranges
All previous work in the field of statistical avalanche runout estimation has had, as

one of its underlying assumptions, that each region or mountain range constitutes a
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Figure 4.5 Runout ratio fitted to an extreme value (Gumbel) probability distribution for 46
avalanche paths in combined mountain ranges. § point defined at 24°.
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separate population of extreme runout distances, and that each region must be analyzed

separately (Mears, 1992, p. 26). The analyses in Section 4.4.3 show that a suitable model
can be developed to represent short slopes in several mountain ranges. The four mountain
ranges used in this study have very different climate characteristics, and represent all three
of the basic snow climate regimes: Maritime, Continental and Intermountain (McClung
and Schaerer, 1993, pp. 17-18).

Runout ratio models for individual ranges are developed in this section to determine
the affect of the climate regime in the different mountain ranges on runout distance. By
looking at individual mountain ranges, however, it must be noted that the sample size is
generally not considered adequate for conducting statistical analyses within reasonable
confidence intervals. From the central limit theorem (Kennedy and Neville, 1986, pp. 117-
121), if N> 30, the normal approximation for the mean and variance of the runout ratio
can be used with good precision even for an extreme value distribution. For the combined
dataset, n = 46, so the normal approximation can be applied. The number of paths for the
Coast, Columbia, Rocky Mountain and the Quebec mountain ranges are 15, 10, 15 and 6,
respectively (Table 4.3). Thus, all the samples for individual ranges are well below the
recommended sample size of N > 30. While considering this limitation, the following
analyses show the results from the development of runout ratio models for individual
ranges, and illustrates the effect of different ranges on the combined model.

Table 4.3 shows the results of regression analyses for the four individual mountain
ranges in the study, with the B point defined at 24°. For the Columbia, Rockies and

Quebec mountain ranges, the fit of a Gumbel distribution to the data is poor

Table 4.3 Results of regression analyses for runout ratio for
individual mountain ranges, p point defined at 24°

. Coefficient of Standard

Mountain . L.

Ranse n determination, error,

g R SE

Coast 15 0.98 0.072
Columbia 10 0.90 0.141
Rockies 15 0.80 0.230

Quebec 6 0.89 0.286
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(i.e. R* <0.90) , especially when compared to the model for the combined ranges

(R*=0.98, Figure 4.5). The Coast Range has a comparable fit to the 4-Range model, with
a slightly lower standard error (Figure 4.6). However, having a third of the number of data
points when compared to the 4-Range model shows that the fit of the 4-Range model must
be considered a better model. The individual model for the Coast Range is promising and,
with the addition of more data, could prove to be a useful model. The resulting location
parameter, u, for the Coast Range is 0.562 and the scale parameter, b, is 0.423, both of
which are very close to the values for the 4-Range model. The resulting regression
equation for the Coast Range, hereafter called the Coast Range model, can be written as

(Ax/Xp)p =0.562 = 0.423 In(=In(P)) (4.8)
and has a coefficient of determination of 0.98 and a standard error of 0.072.

There are no obvious reasons why the Coast Range should give more consistent
results than the other ranges. There probably is no less variation in climate regime within
the Coast Range when compared to the other ranges. It may even be the case that there is
more variation in climate regime considering that the sites included in the Coast Range
include relatively maritime sites near the Pacific coast (e.g. Mt. Seymour, Brohm Ridge),
sites within the dryer Cascade Range (Zum Peak, Zopkios Ridge), and arguably

intermountain sites near Penticton (Apex Mountain) that were included in the Coast Range
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Figure 4.6 Runout ratio fitted to an extreme value (Gumbel) probability distribution for 15
avalanche paths in the Coast Mountain range. § point defined at 24°.
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primarily because they are closer to the Coast Range than to the other ranges. A strong

argument could also be made for including these sites in the Columbia Mountains but, for

this project, they are classified as part of the Coast Range.

4.4.5 Length-scale effects for runout models

Similar to previous studies (e.g. McClung and Mears, 1991), the combined range
dataset for short slopes exhibits a scale effect when the runout ratio is used to define
runout distance. The Spearman rank correlation coefficients of Hp and X with the runout
ratio, Ax/Xp, are both -0.55 (n = 46), which are highly significant (p < 10™*) for both of the
scale parameters. This indicates that the scale of the paths has a significant effect on
runout distances. The negative correlations with runout ratio show that proportionately
longer runout distances are associated with the shorter paths in the dataset which is
consistent with the findings of McClung and Mears (1991).

Previous studies have found that partitioning the data into subsets provides a way to
assess the length-scale effects on the model. Both McClung and Lied (1987) and McClung
and Mears (1991) found that slopes with a vertical drop of less than 350 m did not fit well
into their dataset, and consequently trimmed these paths from their dataset. In this study,
the majority of the slopes have vertical drops of less than 350 m and, by developing a
model for this dataset, the scale effect between larger slopes and slopes less than 350 m
high is likely being addressed. However, within this dataset, there is also a scale effect,
and it is important to estimate an upper limit for which a “short slope” model may be most
applicable.

With the B point defined at 24° and using the 4-Range dataset, a series of regression
analyses were conducted to assess the fit of a Gumbel distribution to the data for slopes
with a vertical fall height, H,, of less than a range of maximum values. The results of these
regression analyses (Figure 4.7) show that the best fit linear regression is found when the
dataset is limited to slopes with a vertical fall height of less than 275 m. Using this limit,
the coefficient of determination, R, is maximized at 0.99 and the standard error is
minimized at 0.063. This is an improvement in model fit over the 4-Range model
developed in Section 4.4.3, with a 25 % reduction in the standard error. It should be noted,

however, that this refined model is based on approximately 25 % fewer paths (n = 33)
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compared to the 4-Range model for all the paths (n = 46). The preference for the minimum
number of data points to exceed 30 (see Section 4.4.4) is achieved by this model and thus
it can be considered to a statistically useful result. The data and linear regression line for
this model are shown on Figure 4.8, and the resulting regression equation for slopes with a
vertical fall height of less than 275 m, hereafter called the H275 model, is

(Ax/Xy)p =0.534-0.451 In(-In(P)) (4.9)

4.4.6 Residual analysis

The models developed in Sections 4.4.3 (4-Range model), 4.4.4 (Coast Range
model) and 4.4.5 (H275 model) using the runout ratio method were accepted as potentially
useful models based primarily on the resulting fit of estimated values to observed values
in terms of the coefficient of determination and standard error. In this section, the
statistical validity of these models is assessed using residual analyses.

A regression residual is the observed value of the dependent variable minus the
predicted value (Mendenhall and Sincich, 1996, p. 378). In the following analyses,
residuals for the runout ratio, Ax/Xj, are calculated by comparing the observed values,

those calculated from the fitted parabolic curves and the observed runout positions, with
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Figure 4.8 Runout ratio fitted to an extreme value (Gumbel) probability distribution for 33
avalanche paths in combined mountain ranges with H, <275 m. B point defined at 24°.

the runout ratios estimated by the models.

Plots of the standard residuals for the three models are shown on Figures 4.9, 4.10
and 4.11. The abscissa represents the number of standard deviations of the residuals about
the mean. By comparing these plots to the expected normal distributions, none of the three
figures show obvious non-normality. To assess the normality of these residuals, the
distributions are compared to the expected normal distributions using the Kolmogorov-
Smirnov (K-S) and Lilliefors tests of normality (Neave and Worthington, 1988, pp. 149-
159; 100-103). The results of this comparison are shown on Table 4.4. The hypothesis of
normality was not rejected for the K-S test for all three models, and was rejected for the

Lilliefors test at the 1% significance level only for the H275 model. Regression is robust

Table 4.4 Normality tests for residuals for runout ratio

models
K-S Lilliefors
Model
d p p
4-Range, n =46 0.119 | >0.20 | <0.10

Coast Range, n =15 0.161 [ >0.20 >0.20
H275,n=33 0.180 | >0.20 [ <0.01
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with respect to non-normal residuals (Mendenhall and Sincich, 1996, p. 412), and

consequently, these three models can be considered to have normal or near-normal
distributions of the residuals.

It is common practice to define statistical outliers as observations with residuals that
are greater than approximately three standard deviations from zero (Mendenhall and
Sincich, 1996, p. 414). These outliers are often removed from the model dataset in order to
improve the model fit using regression techniques. Examination of Figures 4.9 through
4.11 show that the 4-Range (n = 46) model has one outlier with a residual greater than
three standard deviations from the mean. Another datapoint has a value of approximately
2.5 standard deviations from the mean. These two points correspond to the Brohm Ridge
path in the Coast Range and the Harvey Bowl path in the Rockies, respectively.

It is important to understand why these two points may be considered outliers, and
that these outliers may belong to populations different from other paths in the dataset
(Mears, 1992, p. 25). Examination of the statistical distribution of the data shows that the
Brohm Ridge and Harvey Bowl paths have o angles of 18.8° and 19.8°, respectively,
which are significantly lower than the mean value of 26.5°, but within typical ranges for
extreme avalanches observed in other studies (e.g. Lied and Bakkehei, 1980; Martinelli,
1986; Nixon and McClung, 1993; Johannesson, 1998). One similarity between these two
paths is that they reached relatively gently sloping areas of 10°, and continued past these
areas onto slightly steeper slopes below and within partly confined stream channels. By
concentrating the avalanche flow within a channel in the runout zone, it is possible that
greater runout distances were achieved when compared to an open slope where avalanche
material would disperse (Mears, 1984). McClung (2001a, p. 1262) also points out that
“sometimes paths are highly confined in the runout zone resulting in unusually long
running distances on slopes at or below 10°”.

While it is tempting to reject these two paths based on the above argument, the
purpose of these models is to estimate extreme runout distances. Consequently, one needs
to be cautious about rejecting long-running avalanche paths as this may result in a model
that underestimates runout distances for the tail events on a Gumbel distribution
(Figure 1.10), which is the area of interest for engineering and planning purposes. Doing

so may result in a model that is less conservative for the most extreme avalanches within
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the dataset. For this reason, these two outlier paths are left in the dataset and analyses.

The assumption of constant variance about zero can be tested by examining scatter
plots of residual values for random scatter about zero. The plots shown in Figures 4.12,
4.13 and 4.14 show random scatter of data around zero for the Coast Range and the H275
models, which satisfies the assumption of constant variance. There are linear trends
discernable for runout ratios between 0 and 0.8 in Figures 4.12 and 4.13 In this range of
runout ratios, the models make a transition from under-estimating to over-estimating the
runout ratio, but the residuals still scatter about zero. This trend, known as serial
correlation or residual correlation (Mendenhall and Sincich, 1996, pp. 350, 430), is most
important when data are in a time series, but may also be relevant in this case because the
data have been ranked.

The Durbin-Watson test (Mendenhall and Sincich, 1996, p. 430) is used to test for
the presence of residual correlation. Applying this test to the three models, only the H275
model has a Durban-Watson d-statistic of 2.0, which implies the residuals are not
correlated with the runout ratio. The 4-Range model has a d-statistic of 1.23 and the Coast
Range model has a value of 0.61 implying that these residuals are positively correlated. A
positive correlation of residuals with the runout ratio implies that larger runout estimate
errors are associated with higher runout ratios, or those paths with relatively longer runout
distances. Thus, larger errors are associated with the paths in the dataset with the most
extreme runout distances and, conversely, smaller errors are associated with the paths in

the dataset with less extreme runout distances.

4.4.7 Summary of models developed using runout ratio methods

Several models were developed in the preceding sections using the runout ratio
method. After analysis of the residuals, it is possible to summarize and propose uses and
limitations for these models. Table 4.5 shows a summary of the regressions of the runout
ratio on non-exceedance probability, P, and gives values of b and u for each model. The 4-
Range model includes the greatest number of data and therefore best represents runout
ratios for short slopes in Canada. The coefficient of determination for the 4-Range model
is comparable to that of the other models, while the standard error is slightly higher. While

the H275 model showed randomly distributed residuals and no serial correlation among
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Table 4.5 Extreme value scale and location parameters (b, u) for
the three proposed runout ratio models
Model n R’ SE u b
4-Range 46 098 | 0.080 | 0.494 0.441
Coast Range 15 0.98 0.072 | 0.562 0.423
H275 33 099 | 0.063 | 0.534 0.451

the residuals, the 4-Range model displayed serial correlation in the middle range of data.

A comparison of the estimated and observed values for the 4-Range and Coast
Range models shows that there is an average of 0.4 % difference between the estimated
and observed values, which is an inconsequential amount when compared to the potential
errors introduced in data field measurements. Field measurement errors were estimated to
be approximately 2 % (Sections 3.3 and 3.7), which is an order of magnitude higher than
the average residual error of 0.4 %. Based on this, the residual errors in the models can be
overlooked and the 4-Range model is the preferred model because it incorporates the
highest number of paths for model development. This model may applied with the
stipulation that it may be best suited to avalanche paths with vertical fall heights, H,, of
less than 275 m.

In developing the 4-Range model, two paths with relatively long runout distances
were noted, having runout ratio residuals greater than 2.5 standard deviations from the
mean. While using conventional statistical techniques these could be excluded from
analyses as outliers, but with extreme value statistics one wishes to include extreme data
in the dataset. These “extreme” points are actually the more important data in the sample,
while paths with lower runout ratios are sometimes censored from the dataset (e.g.
McClung and Mears, 1991). Thus, these two paths were included in the analyses. Both of
these paths have partially channelized runout zones which may contribute to longer runout
distances (McClung, 2001a). Therefore, it should be pointed out that one of the limitations
of this model is that it may not apply well to avalanche paths with confined or partly
confined runout zones.

Although the results of the regression for the Coast Range (Equation 4.8) appear to

be good, this regression is based on 15 avalanche paths, and therefore the utility of this
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model is limited at present. Collection of additional data for this model could result in a

model well suited to paths in the Coast Range.

It was demonstrated in Section 4.4.3 that a § point located where the slope first
reaches 10° is not a suitable reference point for a dataset comprising short slopes.
Previously, McKittrick and Brown (1993) showed that a B point located where the slope
first reaches 18° was better suited to a dataset of paths in southwest Montana. In this
study, it has been shown that the location where the slope first decreases to 24° is a more
appropriate location for the  point for short slopes within Canada, and that there may be
some physical basis behind choosing the 3 point at this location (McClung and Mears,
1995; Salm et al., 1990). Because the § point has been redefined in this study to the
location where the slope first reaches 24°, there is little point in trying to compare the scale
and location parameters from these models to the parameters from previously developed

models.

4.5 Multiple regression method
4.5.1 Introduction

In this section, least squares linear regression techniques are used to relate the
dependent (response) variable, a, to various independent (predictor) terrain variables. The
predictor variables must satisfy the condition of independence from a. The regression
model to be developed has the general form

0= PBo+ Prxr + Poxa + ...+ Pt g (4.10)

that is used to describe a linear relationship between one dependent variable o and &
independent random variables x;, x»,..., X;. The term 3; determines the contribution of the
independent variable x;, and is not to be confused with the f angle. The term € represents
the random error component of the model that makes the model probabilistic rather than
deterministic. This error should satisfy two basic assumptions: it has a normal probability
distribution with a mean equal to zero and a variance equal to the square of the population
standard deviation, 6*; and the random errors are probabilistically independent
(Mendenhall and Sincich, 1996, p. 175). Multiple regression involves fitting a general
linear model to the dataset by estimating the coefficients p; that appear in the model. The

coefficients are chosen to minimize the error sum of squares (the differences between the
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observed a; and estimated a;). This approach of using multiple regression to estimate o

using terrain parameters is similar to the methods of Bovis and Mears (1976) and Lied and
Bakkehei (1980).

It was shown on Table 4.2 that the runout ratio, Ax/Xp, can be considered a normally
distributed variable, in addition to fitting an extreme value distribution. While multiple
regression methods could also be used to estimate the runout ratio based on the normality
of this variable, the intention of this project is to use existing methods for statistical runout
modelling. Thus, multiple regression methods are only used to develop a model to

estimate o, not the runout ratio.

4.5.2 Initial regression model

Possible predictor variables for a were chosen from the 25 distinct terrain variables
shown in Table 4.1 by including only those variables that are not a function of the o angle.
Ordinal variables were included since these may be utilized in linear regression models,
provided the regression residuals are normally distributed. In order to optimize model
construction, predictor variables that are significantly correlated with the predictor
variable, a, were selected for model development.

Spearman rank correlations between the predictor variables and o are shown in
Table 4.6. All calculations in Table 4.6 and subsequent analyses in this thesis are based on
the  point defined where the slope first decreases to 24°. Significant variables (p < 0.05)
are highlighted, and near-significant correlations (p = 0.05) are shown in italics. Six of the
variables are significant at the 0.05 level and these are used for model development. Other
predictor variables that showed correlations of borderline significance with o were the
Starting zone inclination, 6, and the Terrain Profile, TP. A total of eight predictor variables
were used to develop the regression model, including the two near-significant variables.
Backward elimination multiple regression methods (Mendenhall and Sincich, 1996,

p. 247) were used with these eight predictor variables to obtain the best fit of the estimated
values of a to the observed values.

A plot of the estimated against the observed data in the early part of the analyses
showed one significant outlier, Mount Seymour, which had a standard residual in excess

of three standard deviations from the mean. This path has a very large vertical drop to the
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Table 4.6 Spearman rank correlations between the response variable, a, and predictor

variables. p point defined at 24°

Variable n R P’
Beta angle, B (°) 46 0.482 | 7.00x10*
Vertical height to p point, Hy (m) 46 0.610 6.67 x 10°°
Horizontal reach to  point, X; (m) 46 0.568 3.81x10°
Vertical height to low point on parabola, H, (m) 46 0.651 9.50 x 10”7
Second derivative of the slope function, y" (m™) 46 -0.169 0.262
Scale parameter for path profile, Hy'' 46 0.684 1.56 x 10
Starting zone inclination,0 (°) 46 0.260 0.081
Starting zone aspect, Aspect (°) 46 -0.081 0.591
Starting zone elevation, SZ Elev (m) 46 0.086 0.571
Runout zone elevation, RZ Elev (m) 46 0.025 0.868
Surface roughness, SR (m) 46 0.067 0.659
'Wind Index, WI (ordinal data) 46 -0.237 0.112
'Width of starting zone, W (m) 46 -0.293 0.048
Terrain Profile, TP (ordinal data) 46 -0.276 0.063

'Rows for which p < 0.05 are marked in bold. Rows for which p < 0.10 italicized

alpha point (H, = 593 m) far greater than H, for other paths in the dataset (average

H, =224 m). Excluding this outlier from the analysis results in a greatly improved fit of

the regression to the data.

After removal of this outlier, variables were systematically removed from the

regression model equation (backward elimination) when they were found to have a

minimal effect on the model (i.e. variable F-values were less than a specified threshold at

each step in the regression). F-values (Table 4.7) were computed at each step in the

regression to help facilitate removal of variables from the regression equation. Using a

threshold F value of 3.1 (1 % significance level, v, = 8, v, = 36; Mendenhall and Sincich,

Table 4.7 Eight predictor variables used in multiple regression
analyses and corresponding backwards elimination F values

Variable F to remove'
Beta angle, B (°) 0.902
Vertical height to B point, Hg (m) 0.288
Horizontal reach to B point, X3 (m) 3.433
Vertical height to low point on parabola, H, (m) 11.759
Scale parameter for path profile, Hy'"' 31.800
Starting zone inclination, (°) 2.472
'Width of starting zone, W (m) 0.785
Terrain Profile, TP (ordinal data) 6.442

! Rows for which F > 3.1 (1% significance level) are in bold




Table 4.8 Results of multiple regression analysis for o
Adjusted R* =0.79, Coefficient | Standard
SE =1.9%p <10* B: error of f; p
Intercept 22.42° 1.38° 1.9x 107"
Hy" 22.11° 2.63° 1.9x 10
TP -2.60° 0.59° 8.1x107
H, 0.01°m™ | 0.003°m" | 5.0x10*
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1996, p. 235, 821), all variables but Hopy", Hy, TP and X were eliminated from the
regression equation. Additional analyses showed that X could also be removed from the
regression equation with minimal effect on the results. Thus, X3 was removed and the
remaining three predictor variables for a were Hyp)", TP and H,. Removal of any of these
three variables had a large effect on the model, with R* values going from 0.79 with all
three predictor variables to 0.72 or less when any one of the three variables were removed.
The resulting regression equation is

6.=22.42+22.11 Hyy"-2.60 TP +0.01 H, @.11)
This model has an adjusted R* of 0.79, a standard error of 1.9° and utilizes 45 of the
avalanche paths for model development. It can be observed that all three predictor
variables are topographic parameters derived from the slope profile (Figure 4.1) and that
all three are statistically significant (Table 4.8) in the regression equation. A summary of

the results of regression, including the standard error and significance levels for each

predictor variable is shown in Table 4.8.

4.5.3 Simplified regression model

As in previous studies, the goal is a simple regression equation for estimating o with
reasonable accuracy that uses a limited number of variables. Previous studies (e.g.
McClung and Lied, 1987; McClung and Mears, 1991) found that predictor variables other
than  were not statistically significant in regression analyses of slopes mostly over 300 m
in vertical fall height. Results in Section 4.5.2 showed that, although the  angle is
significantly correlated with a, it is not one of the most useful predictors for multiple

regression for this dataset of short slopes. For this dataset, Hy)" is the most statistically



76
significant variable in the regression equation, followed by TP and then H, (Table 4.8).

Removing TP from the regression analysis results in an adjusted R* of 0.69 and a standard
error of 2.3°. Removing H, from the regression analysis results in an adjusted R* of 0.72
and a standard error of 2.2°. Removal of both TP and H, results in an adjusted R? of 0.46
and a standard error of 3.1°. It can thus be observed that the regression may best be
simplified by removing H, from the regression, and the resulting regression equation is

0 =25.46+26.93 H,y" —3.74 TP (4.12)
with an adjusted R of 0.72 and a standard error of 2.2°. However, simplifying the
equation to this form may not be very beneficial, considering that the variable Hy, must
also be calculated as part of the variable Hy)". The regression equation developed in
Section 4.5.2 (Equation 4.11) is preferred since it has a higher adjusted R* and lower

standard error than Equation 4.12.

4.5.4 Residual analysis

The regression model developed in Section 4.5.2 was accepted as a promising model
based primarily on the resulting fit of the estimated values to observed values in terms of
the adjusted R* and standard error values. Before acceptance of this regression model, the
residuals of regression are analysed, as in Section 4.4.6, to determine the statistical
validity of the model.

The assumption of constant variance is tested by examining a plot of standard
residuals for random scatter about zero. Visual inspection of Figure 4.15 shows that the
assumption of constant variance is satisfied.

The distribution of the standard residuals is shown in Figure 4.16 along with the
expected normal distribution. The K-S test for normality has a d value of 0.09 (p > 0.20)
which, along with the Lilliefors test (p > 0.20), show that the hypothesis of normality of
the residuals is not rejected. Thus, the assumption of normality of the residuals about a
mean of zero is satisfied.

The third assumption to be tested is that the residuals are not serially correlated. The
Durban-Watson statistic has a value of 2.0, indicating that the residuals are not correlated.

Since the above three assumptions for multiple regression have been satisfied, it is

concluded that the regression equation developed for estimating o (Equation 4.11) is
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Figure 4.16 Distribution of residuals, multiple regression model (Equation 4.11)

statistically valid.

These three basic assumptions were also tested for the simplified model presented in

Section 4.5.3 (Equation 4.12) using similar methods. The K-S test for normality has a d

value of 0.14 (p > 0.20), while the Lilliefors test has a significance value of p < 0.05.

Thus, the hypothesis of normality of the residuals is not rejected based on the K-S test but
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Table 4.9 Spearman rank correlations of predictor variables
to test for multicollinearity in regression models
Variables Spearman R )2 n
Hpy"and TP 0.298 0.0467 45
Hy" and H, 0.329 0.0275 45
TP and H, -0.365 0.0136 45

is rejected based on the Lilliefors test. The Durban-Watson statistic has a value of 2.0,
indicating that the residuals are not correlated for the simplified model (Equation 4.12).
Analyses were conducted to assess if the variables used to develop the models
(Equation 4.11 and 4.12) are significantly cross-correlated. When two or more
independent variables in the regression are correlated, a condition called multicollinearity
exists (Mendenhall and Sincich, 1996, p. 355-357). Highly significant correlations among
the predictors can lead to problems with multiple regression, including increasing the
likelihood of rounding errors in the calculation of B; coefficients, and obtaining confusing
and misleading results. Based on Spearman rank correlations of the three predictor
variables with each other (Table 4.9), all three variables used in the analyses, Hy", TP and
H, are significantly cross-correlated with each other at the 5 % significance level
(p <0.05) but are not highly significant at the 1 % significance level (p < 0.01). Problems
may arise in regression analysis when serious multicollinearity is present (Mendenhall and

Sincich, 1996, p. 355), which is not the case with these variables.

4.5.5 Effects of different mountain ranges on regression models

Figure 4.17 shows the standard residuals from the analysis in Section 4.5.2
(Equation 4.11) for estimating the a angle. Distinct symbols are marked for each mountain
range. All values are within three standard deviations of zero, indicating the absence of
any statistical outliers, and the majority of residuals fall within two standard deviations of
zero. All of the residuals for the Coast mountain range are within approximately one

standard deviation of zero indicating that the Coast range accounts for the least amount of
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Figure 4.17 Distribution of residuals by mountain range

error in the model. The other three mountain ranges, the Rockies, Columbias and Quebec
mountains, have residuals mostly less than two standard deviations. This is consistent with
the results of Section 4.4.4, in which the Coast mountain range was found to have more
consistent results than the other mountain ranges. This also implies that, with additional
data points (i.e. n > 30), a suitable regression model could be developed for the individual
Coast Range, while the advantage of such an approach for short slopes in the other three

ranges is not apparent in this dataset

4.5.6 Scale effects on regression models

The standard residuals in the regression model are plotted versus the vertical fall
height, H,, in Figure 4.18. The standard residuals are randomly scattered about zero for all
paths. A similar result for standard residuals plotted versus the total horizontal distance to
the a point, X,, is shown on Figure 4.19. Since there is no discernable scale effect in the
regression model developed for estimating a, the model can be used for all vertical fall
heights in the dataset (51 m to 440 m) and all horizontal lengths in the dataset (124 m to
852 m), excluding the Mount Seymour outlier path. As discussed in Section 4.4.5, the
models developed using the runout ratio method may be best suited to the smaller slopes

in the dataset (e.g. H, <275 m), while scale effects are less apparent in the multiple
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regression model.

4.5.7 Proposed physical effects of independent variables
The three independent variables used in the regression model, Hyp", Hy and TP are

topographic parameters connected to the terrain profile for each path (Figures 4.1 and 4.2).
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While all three variables are statistically important parts of the regression model, the

physical effect of each variable runout should be discussed to evaluate their individual
contribution to the model.

The variable Hgy" was found to be statistically significant in studies for other
mountain ranges (Lied and Bakkehgi, 1980; McClung and Lied, 1987; Lied et al., 1995;
Johannesson, 1998). In all but the study by Lied et al. (1995), Hyp" was subsequently left
out of the regression equation for a since it did not substantially improve the model.

Lied and Bakkeheoi (1980) argue that scaling the radius of curvature, ", with H
makes the profile independent of the vertical fall height of the path. Their reasoning is that
an avalanche path with a small vertical fall height should have a similar o to one with a
large vertical fall height for a path with a similar shape (Lied and Bakkehei, 1980).

Hyy" is strongly and positively correlated with a (Table 4.6), which means that
higher values of Hy)" are associated with higher values of a, and consequently shorter
runout distances.). Spearman rank correlations between Hyy" and the scale variables X
(R=0.293, p=0.051) and Hp (R = 0.408, p = 0.0054) show that, contrary to the
discussion of Lied and Bakkeheoi (1980), the variable Hy)" is strongly scale dependent for
the short slope dataset, even though it is a dimensionless variable.

Hj is also strongly and positively correlated with o, while y" is not significantly
correlated with a (Table 4.6). Interpretation of these correlations shows that paths with
higher values of y" (highly curved) and higher values of H (taller slopes) are associated
with higher values of a, or relatively shorter runout distances. Conversely, low curvature
(nearly planar), short paths are associated with lower values of a, or relatively longer
runout distances.

In terms of avalanche dynamics, highly curved avalanche paths have higher energy
losses associated slope angles that decrease markedly down the path and consequently
reduced runout potential. The lowest amount of energy loss would be associated with a
perfectly linear slope, for which y" = 0.

The finding that H, is also strongly and positively correlated with a agrees with one
of the original hypothesis of this study that shorter slopes have relatively longer runout
distances than taller slopes in this dataset. While shorter slopes have relatively longer

runout distances, as the strong and positive correlation with a suggests, there is also
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curvature effect in the model with respect to y". Thus, Hy" is a more important predictor

variable for a than either y" or Hj alone.

The variable TP, the terrain profile, is moderately and negatively correlated with a,
but is not significant at the p = 0.05 level. Recalling from Section 4.2, TP = 1 represents a
slope with a nearly linear transition in slope angle from the track to the runout zone,
TP = 2 represents a path with a concave parabolic shape, and TP = 3 represents a path
with a hockey-stick profile (Figure 4.2). This variable is highly related to the radius of
curvature, )", but accounts for the very abrupt change in slope associated with hockey-
stick profiles. Based on the negative correlation of TP with a, paths with higher values of
TP (i.e. hockey-stick profiles) are correlated with lower values of o, and consequently
longer runout distances. This finding agress with Martinelli (1986) who observed
unusually long runout distances associated with short-track, hockey-stick profile paths.
One possible physical interpretation for this phenomenon is that fast moving snow may
become partly fluidized upon reaching an abrupt slope transition associated with paths
with hockey stick profiles (Martinelli, 1986; K. Lied, personal communication, 2002).
Thus, snow in these cases may flow greater distances due to the entrained air and reduced
frictional forces past this transition location (Martinelli, 1986). Another explanation for
this phenomenon is that there is a tendency for snow to be deposited at a sharp slope
transition and for the remaining snow to overide the material trapped in the transition area
(McClung and Mears, 1995). The material trapped at the transition may serve to reduce
frictional forces at the transition, resulting in relatively longer runout distances.

An important point to note is that the TP variable may simply be compensating for
the quadratic fit of the curves to the hockey-stick profiles. It may be the case in these paths
that the beta points for the fitted curves should be located farther upslope than the beta

Table 4.10 Summary of multiple regression models

adjusted Model Coefficient, ;

SE

Model n R
P |Intercept| Hy'" | TP H,

Initial model 45 0.79 [1.9°|<10° | 22.42° |22.11°[-2.60°]0.01 >m™
(Equation 4.11)

Simplified model | 45 0.72 [22°[ <107 | 2546° (26.93°|-3.74° n/a
(Equation 4.12)
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point at the transition of the hockey stick. Thus, when terrain parameters are taken from

parabolas fitted to path profiles, avalanches in paths with hockey-stick profiles run farther
in relation to paths with other profiles.

From a practical perspective, higher values of TP (i.e. TP = 3 for hockey-sticks) are
associated with lower values of o, as shown by the negative contribution of TP to the
regression model (Table 4.10). Therefore, for conservative estimates of runout one would
have a preference to choose higher vaules of TP in the model if unsure of which category
of TP to apply to the path profile.

If sufficient data were available, separate models could possibly be developed for
each terrain profile class, or at least separate models for paths defined as hockey-sticks
and other paths. However, there were only 10 paths classified as hockey-sticks in this
study, which is not a sufficient number of data to conduct multple regression analyses for

paths with TP = 3.

4.5.8 Summary of regression models

One avalanche runout model and a simplified version of this model were developed
in the proceeding sections using multiple regression. The models were refined by
excluding one outlier, and analyses of the residuals were performed. These models are
summarized in Table 4.10 and below, and uses and limitations for the models are
proposed.

The Initial model (Equation 4.11) has a slightly higher adjusted R* and lower
standard error than the Simplified model (Equation 4.12). Considering that the variable H,
must be calculated as part of the variable Hp", there is little reason to choose the
simplified model over the initial model. Thus, the preferred regression equation relating o
to terrain parameters is

6.=22.42+22.11 Hyy"-2.60 TP +0.01 H, @.11)

A comparison of residuals for individual mountain ranges (Section 4.5.5) showed
that the Coast Range contributes the least amount of error to the proposed model and, with
additional data, a regression equation might be developed for the Coast Range
independent of the other ranges. A review of the standard residuals versus the vertical

drop to the a point, H,, and the total horizontal distance to the a point, X, shows that there
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is no discernable scale effect in the regression model developed for estimating a. This is in

contrast to the models developed using the runout ratio method, in which there is a
discernable scale effect in the dataset.
The physical effect of the three independent variables on the regression model was

discussed to evaluate their individual contribution to the model.

4.6 Comparison of runout ratio and multiple regression methods

In the previous sections, avalanche runout models were developed using two
different methods: the runout ratio method and the multiple regression method. Both
methods yield models that provide reasonably good fits to the sample of avalanche paths
from this study. To determine which of the models provide better estimates of runout
distances, models based on the two methods are quantitatively compared in this section.

The models developed using the multiple regression method measure runout in
terms of a, while models developed using the runout ratio method measure runout in terms
of the runout ratio, Ax/Xg . With measured values of the predictor variables Xj and f3, the
runout can be estimated in terms of a and Ax/X for model comparison. Because the model
coefficients in the regression method have been chosen to minimize the sum of squared
residuals in a, a bias is introducted when comparing these models to the models developed
using the runout ratio method in terms of a (Johannesson, 1998). Similarily, the
coefficients in the runout ratio method have been chosen to minimize the sum of squared
residuals in the runout ratio, Ax/Xp, so comparing models in terms of Ax is biased toward
the models developed using the runout ratio method. Thus, it is best to compare models in
terms of both Ax and a. The following model comparison follows the approach of
McClung (2001a).

Models developed using the multiple regression method contain the assumption that
runout distances, measured in terms of a, are approximately normally distributed. This has
been shown to be a valid assuption for the proposed regression model in Section 4.5. For a
given avalanche path with a constant value of 3, a decreases as the non-exceedence
probability, P, increases with runout distance (measured from the § point) in the runout
zone (McClung, 2001a). A chosen non-exceedence value of P (0 < P < 1) defines the

number of op values for which P x 100 % of the values in the normal distribution will not
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be less than the given value of ap (McClung and Mears, 1991). A fit of the data using

multiple regression methods allows for the estimation of a as a function of the non-
exceedence probability, P, where the estimation interval for o, is defined as (Walpole and
Myers, 1985, p. 371):
ap =22.42+22.11 Hyy"=2.60 TP +0.01 H,y =z, SE(1+x) 4™ xo)% (4.13)

where zp is the z-statistic representing standard deviations from the mean for a normal
distribution, and the term SE (1+x," 4™ x0)"”* represents the standard deviation of the
sampling distribution for the estimator ap using maxtrix operations, also called the
standard error of estimation in many regression computer packages. The term x,' is called
the condition vector where x¢' = [1, x}¢, X20,. ..,Xk0] for k£ predictor variables. A s the
inverse (k + 1) X (k+ 1) matrix for the data used to build the regression model. The term
zpSE(1+x9" A x0)" in Equation 4.13 provides a estimation interval for an individual ap
given a non-exceedance probability, P.

The term 1+xy"A™" xo is complicated to calculate manually and is typically computed

by computer packages using the regression model input data. Equation 4.13 can be

simplified to
ap=22.42+22.11 Hyy" =2.60 TP +0.01 H, - CpSE 4.14)
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Figure 4.20 Prediction interval correction factor, Cp, in Equation 4.14
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where Cp is a correction factor shown graphically in Figure 4.20 for a given non-

exceedence probability, P, and SE is the standard error of regression of 1.9°. It can be
observed in Figure 4.20 that the relationship between Cp and P increases non-linearly for

P>0.85.

The relationship between o and Axp can be expressed by the relationship

Axp _ tanf —tana,

X tana, —tand (4.15)

(McClung, 2001a) where Axp and o, are the runout distance and a angle at a given value
of P, and 6 is the angle measured from the horizontal by sighting between the o and 3
points (Figure 4.1). Because X3 is a constant value for an individual avalanche path, the

runout distance can be expressed as

Axngwg)(ﬁ (4.16)
ano, —tand

The & angle is determined analytically rather than statistically (McClung, 2001a).

The runout ratio method assumes that runout distances can be represented by a
Gumbel distribution. This was shown to be a valid assumption in Section 4.4. For a given
avalanche path, the runout ratio, Ax/Xj, increases as the non-exceedence probability
increases with runout distance measured from B in the runout zone. A chosen non-
exceedence value of P (0 < P < 1) defines the number of Ax/Xp values for which
P x 100 % of the values in the normal distribution will not exceed the given value of
Ax/Xp. The equation representing the runout ratio, Ax/Xj, as a function of the non-
exceedence probability, P, is (see Section 4.4.3):

(Av/X;), =0.494 - 0.441 In(-In(P)) (4.7)
Because Xj is a constant value for an individual avalanche path, Equation 4.10 can be re-
written in terms of the runout distance, Axp
Axp =[0.494—0.441 In(~In(P))] X, 4.17)
This term may be compared with the expression for the runout distance as a function of
non-exceedance probability for the multiple regression method (Equation 4.16).
Table 4.11 shows a comparison of the models developed using the runout ratio and

multiple regression methods for two avalanche paths chosen randomly for each mountain
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Table 4.11 Comparison of runout distances and a. angles for eight paths for the regression
model o, = 22.42 + 22.11 Hpy" - 2.60 TP + 0.01 H, - CpSE (Equation 4.14) and the 4-
Range model (Ax/Xp)p = 0.494 - 0.441 In(-In(P)) (Equation 4.7) (Table after Nixon and
McClung, 1993)

Regression model Runout ratio model Observed
Avalanche P estimate estimate value !
Path
a, Avr  |(AxIXp),| @, Avp | @ | Ax
Wolverine 0.99 | 21.1 289 2.426 13.2 642
Ridge 0.90 | 23.1 237 1.439 18.3 378 23.9] 217
0.80 | 23.8 221 1.124 20.9 294 ’
0.50 | 25.0 195 0.648 26.5 167
Shark 0.99 | 22.1 292 2.426 11.5 957
Mountain 0.90 | 24.1 230 1.439 16.1 564 293l 96
0.80 | 24.9 208 1.124 18.4 439 )
0.50 | 26.1 177 0.648 23.5 249
Apex Mountain | 0.99 | 24.7 240 2.426 12.8 &15
East 0.90 | 26.7 191 1.439 17.9 480 303] 115
0801274 176 1.124 20.4 373 )
0.50 | 28.7 150 0.648 25.8 212
Schroeder 0.99 | 24.6 202 2.426 12.0 801
Shoulder 0.90 | 26.7 156 1.439 16.7 472 301 43
0.80 | 27.4 141 1.124 19.2 367 )
0.50 | 28.7 117 0.648 24 .4 208
Brohm Ridge | 0.99 | 16.7 417 2.426 14.7 504
Col 0.90 | 18.7 347 1.439 20.4 279
080 | 194 | 326 1124 | 233 31 |P 2
0.50 | 20.6 292 0.648 29.2 131
Cornice Ridge | 0.99 | 18.1 322 2.426 13.9 488
North 0.90 | 20.1 267 1.439 19.3 288 195] 282
0.80 | 20.9 248 1.124 22.0 224 )
0.50 | 22.1 222 0.648 27.7 127
Mont Jaques | 0.99 | 17.5 459 2.426 14.3 628
Cartier Saddle | 0.90 | 19.5 381 1.439 19.8 370 216|314
0.80 | 20.5 348 1.124 22.6 288 )
0.50 | 21.5 317 0.648 28.4 163
Mont de la 0.99 | 21.1 430 2.426 13.7 889
Passe West 0.90 | 23.2 352 1.439 19.0 524 253 287
0.80 1 23.9 329 1.124 21.7 407 ’
0.50 | 25.2 289 0.648 27.4 231

" Observed values of o and Ax were estimated from vegetation damage during field
studies, corresponding to return periods of 30 - 100 + years
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range, for a total of eight avalanche paths. In order to compare the models in an unbiased

manner, values for both the runout distance, Axp, and the equivalent ap angle are

presented. The results in Table 4.11 show that at higher values of P (0.90 and 0.99), the

runout ratio method estimates longer runout distances than the regression method for most
paths, with the exception of the Brohm Ridge and Mont Jaques Cartier Saddle paths at

P =0.90. This is consistent with the findings of Nixon and McClung (1993), and is

explained by the fact that runout estimates based on the assumption that runout follows an

extreme value distribution should be higher than estimates based on runout following a

normal distribution. High non-exceedance probabilities (e.g. P = 0.90) are important in

engineering applications such as land use planning, where one must account for avalanche
events with longer return periods, and consequently higher non-exceedance probabilities.
Another important observation is that at very high values of P (P = 0.99), the runout
ratio method estimates a values that appear to be unreasonably low (Table 4.11). A review
of the literature (Lied and Bakkeheoi, 1980; Mears, 1984; Martinelli, 1986; McClung and

Mears, 1991; Nixon and McClung, 1993; Johannesson, 1998; Tremper, 2001, p. 70)

shows that for most studies of avalanche runout, which include hundreds of avalanche

paths, minimum observed a values are in the range of 14° to 20°. Exceptionally low values
are in the range of 14° to 16°, with only one recorded a angle of 14° in the Colorado Rocky

Mountains (Martinelli, 1986). The lowest observed a angle from the short slope dataset is

18.8°. Table 4.11 shows that for P = 0.99, the runout ratio model estimates ap angles in the

order of 12° to 15°. This implies that this model may be overly conservative at high non-
exceedence probabilities. The regression model estimates more realistic o angles in the

order of 17° to 24° for a non-exceedence probability of 0.99.

McClung (2001a) compared models developed using the runout ratio and regression
methods and noted several important differences between the models, including:

» The runout ratio method provides more conservative (longer runout distance)
estimations for flat terrain in the runout zone (6 = 0°) and the regression method is
more conservative for sloping terrain (6 = 5° and & = 10°) in the runout zone.

« The runout ratio method has little dependence of the runout distance on runout zone
steepness, while runout distance estimations using the regression method are strongly

influenced by the runout zone steepness.
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Table 4.12 Runout distances calculated using the
runout ratio and regression methods, as a function of
the non-exceedance probability, P, and the slope
steepness in runout zone, ¢ (After McClung, 2001a)

Runout distance (m)

P Method 0=0°10=5°|0=10°|16=15°
0.50 | Runout ratio | 188 188 188 188
0.50 | Regression 98 120 155 222
0.80 | Runout ratio | 326 326 326 326
0.80 | Regression 120 148 195 291
0.90 | Runout ratio | 417 417 417 417
0.90 | Regression 134 167 223 340
0.99 | Runout ratio | 704 704 704 704
0.99 | Regression 177 227 317 537

The results of similar analyses to those of McClung (2001a) for the models
developed in this study are shown in Table 4.12. For comparison, mean values from the
data (Table 4.1) are assumed for the input variables (McClung, 2001a), including
B=32.8° X3 =290 m, Hy=216 m, Hpy" = 0.332 and TP = 2. The slope angle in the
runout zone, o is varied from 0° to 15°, and four non-exceedance probabilities are used:
0.5, 0.8, 0.9 and 0.99. The results in Table 4.12 indicate that there is a strong dependence
of the runout distance on 6 for any P value for the regression method, while the runout
ratio method is independent of 6 for a given P. This agrees with the findings of McClung
(2001a). The runout distances estimated by the runout ratio method are comparable to
values from the regression method for values around & = 15°, which is also the mean value
of 6 for the dataset. McClung (2001a) found the runout distances to be comparable near
0 =5°, which is the mean value for their dataset. This result is not entirely unexpected
considering that he defines the B point where the slope decreases to 10°, while the B point
is defined in this study of short slopes where the slope first decreases to 24°. Thus, based
on this modified definition of the B} point, steeper slope angles beyond the 3 point
(higher o ) are expected for the short slope dataset.

Contrary to the findings of McClung (2001a) for taller slopes, however, both Ax and
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Ax/Xjy are negatively correlated with 8. The Spearman rank correlation of Ax with o is

-0.50 (p = 4 x 10™*) and the correlation of Ax/Xg with 8 1s -0.57 (p =4 X 107). This implies
that longer runout distances are associated with gentler slopes in the runout zone, which
contradicts the findings shown in Table 4.12. A possible explanation for this result is the
presence of numerous paths with hockey-stick profiles in the dataset. Ten of the 46 paths
(22 %) used in the analyses were classified as having hockey-stick profiles. As discussed
in Section 4.5.7, paths with hockey-stick profiles are associated with lower a values, and
consequently longer runout distances. This relationship can also be observed in the
multiple regression Equation 4.11, whereby the negative regression coefficient for TP

(B: = -2.60) means that high values of the predictor variable TP (i.e. hockey-sticks) tend to
reduce the response variable a and therefore increase the runout. By definition of a
hockey-stick profile, the slope angle in the runout zone is close to 0° (Martinelli, 1986).
Thus, paths that have hockey-stick profiles have low values of 6, and these paths are also
associated with longer runout distances. This argument agrees with the results shown in
Table 4.12.

Based on the above results, paths with hockey-stick profiles may have a very strong
affect on the statistical models developed in this thesis, and the number of hockey-stick
profiles found in the dataset may be proportionately higher than in other datasets. From a
terrain perspecitve, it may be the case that hockey-stick profiles are more common for
short slopes than with taller slopes, and such profiles can have a profound effect on
extreme runout distances.

Perhaps the most important finding observed in Table 4.12 is that the runout ratio
model is more conservative than the regression model except for P =0.5 and 6 = 15°. This
agrees with the results in Table 4.11. This result is most profound for the highest non-
exceedance probability analysed (P = 0.99), where the runout ratio method estimates
runout distances between 1.5 and 4 times the distance estimated with the regression

method for 6 = 0° to 6 = 15°.

4.7 Summary
In this chapter, several models were developed to estimate runout distance based on

terrain parameters measured during field studies. Two survey sites with very steep runout
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zones were removed from the analysis, leaving 46 paths available to develop the runout

models.

Several models were developed using the runout ratio method, which is based on the
assumption that runout distances obey an extreme value (Gumbel) distribution. The 4-
Range model was first developed using a 3 point defined where the slope first decreases to
10°, similar to previous studies, although this definition provided a poor fit of the data to a
Gumbel distribution. Further analyses showed that a better fit was obtained when the 3
point was defined where the slope first decreases to 24°. This model included data from
the four mountain ranges, implying that there is little observed difference in runout
distances from short slopes between the four Canadian mountain ranges included in this
study.

The runout ratio method was used to develop separate models for individual ranges,
of which only the Coast Range data provided a good fit to a Gumbel distribution. The
small number of data for this analysis (z = 15) limits the utility of this model, but the good
fit of data to a Gumbel distribution (R* = 0.98, SE = 0.072) shows promise that an
individual range model could be developed for the Coast Range with additional data.
Scale effects were analysed by developing a number of models using variable upper limits
on the vertical fall height of the avalanche paths. These analyses showed that the best
results were obtained when the model was limited to paths with a vertical fall height of
less than 275 m (R* = 0.99, SE = 0.063). This indicates that there is a scale effect in this
dataset of short slopes with respect to runout ratio methods.

Two long-running avalanche paths were noted during analyses using the runout ratio
method. These paths both had runout zones that were within partly confined stream
channels and had high values of runout ratio. This channelization of the avalanche flow in
the runout zone may have contributed to longer runout distances. These paths were
included in subsequent analyses since the runout ratio models are most useful for
estimating extreme runout associated with long running avalanche paths.

Models were then developed using a different technique based on multiple
regression on terrain parameters. Eight potential predictor variables were chosen to
estimate the a angle, all of which had to be geometrically independent of a.. A model was

developed using three of these variables, Hy)", TP and H,, providing a highly significant
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fit of the data to a normal distribution (adjusted R* = 0.79, SE = 1.9°). Attempts were made

to simplify this model to one with only one or two predictor variables. A simplified model
using the variables Hy", TP was developed (adjusted R* = 0.72, SE = 2.2°), but since H,
needs to be calculated as a part of the variable Hgy", the original model was deemed a
more useful model. Scale effects and the proposed physical explanations of the
independent variables on the regression model were discussed.

The final section of this chapter included a comparison of models developed using
the runout ratio and regression methods for the short slope data. It was found that the
runout ratio method estimates more conservative (longer) runout distances than the
regression method for most non-exceedance probabilities. This effect is very pronounced
for the higher non-exceedance probabilities (e.g. P = 0.99), where the runout ratio method
estimates runout distances up to four times that estimated using the regression method.
The a angles calculated using the runout ratio method based on the runout distance for
non-exceedance probabilities of 0.99 appear to be unreasonably low (i.e. in the range of
12° to 15°), while those calculated using the regression method appear to be within a
similar range of low o values found in the literature and in field measurements (i.e. in the
range of 17° to 24°).

Further analyses indicated that runout estimated by the regression method depends
strongly on 9 (slope in the runout zone) for any non-exceedance probability value, while
the models developed using the runout ratio method are independent of & for all given
non-exceedance probabilities. The runout distances estimated by the runout ratio method
are comparable to values from the regression method for values around 6 = 15°, which is
also the mean value of o for the dataset. Again, it was found that the runout ratio method is
consistently more conservative than the regression method for variable P and o values, and
1s most pronounced for non-exceedance probabilities of P = 0.99, where the runout ratio
model estimates runout distances between 1.5 and 4 times the distance estimated with the
regression method for 6 between 0° and 15°.

The importance of hockey-stick profiles in the short slope dataset was recognized
and discussed. When terrain parameters are taken from parabolas fitted to path profiles,
avalanches in paths with a hockey-stick profile run father in relation to paths with other

profiles. This has very important implications for estimating runout distances for short
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5. DYNAMICS RUNOUT MODEL

5.1 Introduction

Models developed for estimating avalanche runout distances using statistical
methods were presented in Chapter 4. These models relate runout distance to simple
terrain variables using either the runout ratio or multiple regression methods. Another
method commonly used for estimating avalanche runout is to apply avalanche dynamics
models. These models are based on the physical modelling of avalanche motion, often
with friction parameters chosen to fit observed avalanche runout distances. In practice,
statistical models are often used to define the extreme runout position in an avalanche path
and dynamics models are subsequently used to estimate avalanche velocities and impact
pressures in the runout zone.

The friction values used in avalanche dynamics models are physically based
parameters that can vary as a function of numerous factors, including snow properties and
path characteristics such as slope angle and surface roughness. True values of friction
coefficients for moving snow are difficult to determine using lab experiments (McClung,
1990). Because of this, and the large variability between avalanche paths and types of
snow involved in an avalanche, friction coefficients are often estimated by back
calculating values based on observed avalanche runout distances, or values are assigned
based on a range of values given within the literature (e.g. Buser and Frutiger, 1980) and
interpreted with the experience of the practitioner. Transference methods are also
sometimes used, whereby information from avalanche paths with known runout distances
is used to estimate friction parameters for the path of interest by systematically comparing
topographical parameters between paths (e.g. Sigurdsson et al., 1998).

Mears (1992, p. 27) remarks that “statistical analysis has shown that the assumed
friction parameters cannot be correlated to measurable terrain variables, such as path size
or shape”. Bakkehei et al. (1981) found that scaling the friction parameter, M/D, in the
PCM model (Perla et al., 1980) with the vertical fall height of the path allowed them to
narrow the possible range of the other friction parameter, 1. However, they found that
friction parameters could not be directly associated with topographic variables, and using

the vertical fall height in analyses merely narrowed the range of possible friction
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coefficient estimates.

It is proposed that, by selecting a simple avalanche dynamics model best suited to a
dataset of short slopes, terrain parameters may be used to narrow the range of friction
coefficient values and possibly provide a first estimate, or average value, of the friction
coefficients to be used in the model. Such a model could help reduce some of the
uncertainty associated with avalanche dynamics modelling by providing a first estimate of
the friction parameters. These values could then be refined by the practitioner based on the
knowledge of variables such as terrain characteristics, avalanche velocity and slope angle,
and combined with expert judgment. Once an average friction value for a path was
estimated, it could then be adjusted to provide more realistic values for various parts of the

path (McClung, 1990).

5.2 Selecting the model

Of the avalanche dynamics models discussed in Chapter 2, very few can be
considered useful for application to short slopes. Reasons for this include that many
models include empirically based assumptions that were developed from a dataset of large
avalanche paths, and that many models assume avalanche flow dynamics that may not be
well suited to smaller slopes (e.g. avalanche motion as a turbulent fluid). The Swiss
dynamics model (Salm et al., 1990) is an example of a model based on a physical
description of avalanche flow that has subsequently been modified to fit a dataset of Swiss
avalanches. Such models have limited utility for a dataset consisting entirely of short
slopes. Thus, one seeks a simple avalanche dynamics model that does not include
empirically derived assumptions, and has a relatively simple mathematical formulation.
Three models that meet this criterion are the Leading Edge Model or LEM (McClung and
Mears, 1995), PCM (Perla et al., 1982) and the PLK (Perla et al., 1984) models. All three
models have different theoretical backgrounds and assumptions, but are all relatively
simple models in terms of mathematics and application.

The PCM model, although mathematically simple, requires the input of two friction
parameters, pu and M/D. The PLK model has the same two friction parameters, p and M/D,
but also has a random particle velocity parameter, for a total of three parameters that need

to be estimated. The PCM and PLK models have previously been described in Sections
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1.7 and 2.2. The presence of two or more friction parameters makes estimation of average

values of the friction coefficients difficult when using regression methods based on terrain
parameters. For this reason, these two models are not considered for analysis in this
section.

The LEM has several qualities that make it the best candidate for application to a set
of short slopes. First is that the simplified LEM requires input of only one basal friction
parameter, 1, whereas most other models require at least two friction parameters. Thus,
there is one unique solution when solving for a specified runout distance in a path. Models
that use more than one friction parameter have non-unique solutions for a specified runout
distance and typically require that one parameter be fixed while the second parameter is
adjusted to fit a known runout distance in a path (e.g. Lied et al., 1995).

The second quality that makes the LEM model a good candidate for application to
short slopes is that it calculates avalanche runout for the tip (leading edge) of the
avalanche, rather than for the centre-of-mass of the deposit.

The third, and perhaps most important reason for selecting the LEM is that it treats
avalanche motion as a granular flow (Dent, 1986; Dent, 1993). For short slopes, many
avalanches would not have sufficient time, travel distance or velocity to fully break up a
slab and form a mass that behaves predominantly as a turbulent fluid. A more probable
situation is that avalanches on short slopes behave like a flowing granular material,
without the substantial turbulence associated with larger avalanches, and especially with
the powder cloud. Thus, the LEM likely models avalanche motion for short slopes more
closely than the PCM, PLK or Swiss models.

Based on these three qualities, the LEM is chosen for analyses in the following

sections.

5.3 Leading Edge Model

The Leading Edge Model calculates the stopping position of the tip of an avalanche
by solution of one-dimensional momentum and continuity equations (McClung and
Mears, 1995). This model assumes that the avalanche mass behaves as a dense granular
material, and that basal drag is the dominant frictional force in the equation. Resistance at

the top of the avalanche is also included in the model, but can be can be ignored in some



96
cases of practical interest (McClung and Mears, 1995). This model also incorporates a

passive snow pressure term that accounts for the slope angle dependence of basal
resistance. The model was developed for use in the runout zone where granular flow is
expected to be the dominant flow mechanism, and requires an incoming avalanche
velocity be specified, usually at the top of the runout zone.

The LEM model assumes that avalanche discharge per unit width is constant, which
1s an approximation, but also a reasonable assumption in the runout zone (McClung and
Mears, 1995). Many other models assume conservation of mass from the starting position
to the runout position (e.g. Perla et al., 1980; Salm et al., 1990) which, due to entrainment
and deposition of snow in different parts of the path, is likely to introduce larger errors
into the model than one that only assumes constant mass in the runout zone.

The force-momentum equation for the Leading Edge Model is expressed as

(McClung and Mears, 1995)

%(V;):—GOHV—Dovzt (5.1)
where
G, = g (ncos y —siny) (5.2)
= vcos (o ~ ) E ME (53)
and

D :%E%E%D (5.4)

In the preceding equations, v is the speed of an avalanche along an incline at time 7, g is
the gravitational constant, p is the basal frictional coefficient, v is the slope angle in the
segment of interest, v is the incoming velocity of the avalanche entering that segment,
is the slope angle on entering a segment, /4 is the flow depth on entering the runout zone,
k, 1s the coefficient of passive snow pressure, D; is the turbulent resistive force, p; is the
density of the snow-dust-air mixture, p is the average flow density, Cp is the drag
coefficient and / is the average flow thickness measured perpendicular to the slope.

In the above equations, the term ¥ is described as the momentum loss that is applied

to the flow at the transition between slope segments with different average slope angles. In
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the interest of simplifying the model for practical application (McClung, 2001c), the

passive pressure term in Equation 5.3 may be ignored, resulting in the momentum
correction
V' =vecos (yy —y) (5.5)
Solving for Equation 5.1, the velocity at the end of a segment (Point B) can be
related to the velocity at the beginning of the segment (Point A) by the simplified

expression

where x is the length of the segment between Points A and B, measured along the slope,
and G is the expression shown in Equation 5.2. Thus, the velocity of the avalanche can be
calculated at each point in the path with knowledge of the incoming velocity at the
beginning of the segment, and by applying a momentum correction (Equation 5.5) at each
slope transition. In the following segment, the velocity at Point B, vz, becomes the initial
velocity at Point 4, v4, for the next segment, and so on down the profile. All that is
required to initiate and apply the model is an estimate of the incoming velocity, vo, an
estimate of the friction coefficient, p, and a path profile divided into i segments of length
x;, each with an approximately constant slope angle, ..

In the runout zone, McClung and Mears (1995) argue that the Dgv’# term in Equation
5.1 can be ignored, which allows the equation to be solved analytically. Thus, the runout

distance, Xz, measured in the last segment of the profile is
Xp=— (5.7)

The above model simplifications result in a model that can easily be applied to individual
avalanche paths and solved analytically. Equations 5.2, 5.5, 5.6 and 5.7 form the
fundamental equations for the Simplified LEM (McClung, 2001c).

Because of the limited vertical fall height for short slopes, there is a strong argument
for the case that granular flow is the appropriate description of the primary flow
mechanism for these paths. The LEM is designed to be applied to the runout zone where
granular flow is believed to be the dominant flow mechanism. The incoming velocity of
an avalanche is estimated based on real velocity measurements of avalanches, for which

the upper limit is typically assumed to be a function of the slope length, Sy, (McClung,
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1990), or the vertical fall height, H, (McClung and Schaerer, 1993, p. 110). Thus,

conditions in the starting zone and track are not important in this model, and modelling
typically is initiated in the lower part of the track or top of the runout zone (McClung and

Mears, 1995).

5.4 Application of the dynamics model

Simplified Leading Edge Models were constructed for each of the 48 avalanche
paths in the dataset. The two long-running paths that were noted in Section 4.4.6 (Monte
Blanche LaMontagne and Blowdown Creek) were also included in these analyses as
dynamics models may be used to model unusual paths, and typically work better than
statistical runout models for these paths. Segments in the models represented the segments
of constant slope angle that were measured during the field survey. The last segment in the
LEM model was the last surveyed section of the path of which the downslope end of the
segment corresponds to the interpreted extreme runout position. Each path typically had
between 10 and 25 segments (Section 3.4).

It was decided that one of the fundamental assumptions of the model — that the
model is initiated with an estimated initial velocity at the top of the runout zone — would
need to be overlooked for two reasons. The first reason is that avalanche velocities are
typically estimated from datasets of velocity measurements from avalanches around the
world, and these datasets typically include few short slopes (McClung, 1990; McClung
and Schaerer, 1993, p. 110). Some velocity measurements for shorter slopes do exist (e.g.
Gubler et al., 1986), but are very limited in number. The second difficulty is where to
define the starting point for the model. For many of the short slope paths, the track was
either very short or not present, and thus defining the location to start the model was
difficult. Also, the point from which to measure runout distances for short slopes (B point)
is interpreted to be the location where the slope first decreases to 24° (Section 4.4.3),
which many would argue is still part of the track.

In consideration of the above arguments, it was decided that the model would be
initiated at the top of the starting zone (starting position), the only known boundary
condition for velocity in the path other than the extreme runout position. At both these

locations, the velocity of the extreme avalanche is assumed to be zero, and thus both these
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locations serve as suitable boundary conditions for the model. It is common practice to

initiate other dynamics models at the top of the starting zone (e.g. Mears, 1992, pp. 27, 29,
31), and for practical purposes this assumption was also applied for the LEM, recognizing
that entrainment and deposition are neglected.

After setting up the LEM for each path, the friction coefficient, p, was adjusted until
the stopping position of the model matched the extreme runout position interpreted from
vegetation damage observed in the field. Thus, a unique value of p was associated with the
extreme runout position for each path. This is a very common technique for obtaining
velocity estimates for extreme avalanches (Mears, 1992, p. 28). The calculated value of p
can be interpreted to be the mean friction coefficient for the entire path. McClung (1990)
and McClung and Mears (1995) point out that the friction coefficient may need to be
varied along the runout zone, as friction conditions at the base of the avalanche tend to
increase with increasing distance in the runout zone and as the mass decelerates and stops
(McClung and Mears, 1995). This correction was not applied for the avalanche paths, so
only an average value of p was calculated. It should be noted that the theoretical upper
limit of the friction coefficient, .y, 1s tana (Scheidegger, 1973). Thus, based on the
range of a in this dataset (18.8° < a < 39.0°) from Table 4.1, initial estimates for pmax
should range between 0.34 and 0.80, with a mean py,.x of 0.49 corresponding to the mean
a of 26.5°.

Table 5.1 shows the statistical distribution of the average friction coefficients and
maximum velocity in the profile calculated using the LEM for each path. Additionally,

statistics are presented for the theoretical upper limit for the friction coefficient, pmax,

Table 5.1 Statistical distribution of friction parameter, u, and
maximum velocity predicted by the Leading Edge Model
Average p | pmax = tan(a) Ma)-ﬂmum
velocity (m/s)

N 48 48 48
Mean 0.49 0.50 33
Standard Deviation 0.11 0.10 8
Minimum, Qo 0.29 0.34 18
Lower Quartile, O, 0.42 0.43 27
Median, O, 0.47 0.50 34
Upper Quartile, O 0.56 0.57 39
Maximum, O, 0.80 0.81 56
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based on the observed extreme runout position. As can be seen in Table 5.1, the values for

average p range between 0.29 and 0.80, which is in very close agreement with the range of
values for the theorectical upper limit of .y, (0.34 to 0.80). This is not surprising since
the LEM model is being fitted to observed values of a (the observed extreme runout
position) and therefore these values should be very closely related.

The maximum velocity calculated by the LEM (Table 5.1) ranges from 18 to 56 m/s
(mean of 33 m/s), and matches very closely the range of typical dry snow avalanche
maximum velocity estimates provided by Mears (1992, p. 11) for slopes with a vertical
fall height of between 100 and 500 m (20 to 55 m/s). Paths in the dataset with larger
vertical fall heights (e.g. Mount Seymour, H, = 593 m) are associated with avalanche
velocities at the upper end of this range (e.g. maximum velocity of 56 m/s in the LEM
simulation). Gubler et al. (1986) measured the velocity of several small (< 500 m’)
avalanches using doppler radar methods and recorded maximum velocities ranging
between 13 and 28 m/s. Based on these two sources, the LEM model fitted to the observed
extreme runout positions is believed to be providing a reasonable representation of
avalanche velocity in these paths. These measured speed values are less than the mean
value (33 m/s) estimates using the LEM probably because the measure avalanche speeds
are not representative of extreme avalanches but, rather, represent avalanche speeds in

smaller, artificially triggered avalanches.

5.5 Multiple regression model for estimating the friction parameter

Similar to the methods used in Section 4.5, multiple regression methods may be
used to try to relate various independent predictor variables to a response variable, in this
case the average friction coefficient, ., in the LEM. Possible predictor variables for p
were chosen from the 25 distinct terrain variables shown in Table 4.1 by including only
those variables that are not a function of p and are not categorical variables. Since, p is
strongly related to a (Scheidegger, 1973), the same 14 potential predictor variables used in
the regression for o (Section 4.5.2) were used as potential predictors for p (Table 5.2).

Spearman rank correlations betweeen the predictor variables and p are shown in
Table 5.2. Significant variables (p < 0.05) are highlighted. Seven of the 14 variables are

significant this level and these were used to build the regression model. Backward
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Table 5.2 Spearman rank correlations between the response variable, |, and the predictor
variables used to develop the multiple regression model

Variable N R P!
Beta angle, B (°) 48 0.328 0.02
Vertical height to p point, Hy (m) 48 0.681 9.8x10°
Horizontal reach to  point, X; (m) 48 0.662 3.0x107
Vertical height to low point on parabola, H, (m) 48 0.724 5.9x10”
Second derivative of the slope function, y"' (m™) 48 -0.340 0.02
Scale parameter for path profile, Hy'' 48 0.594 8.5x10°°
Start zone inclination,0 (°) 48 0.112 0.45
Start zone aspect, Aspect (°) 48 -0.0702 0.64
Start zone elevation, SZ Elev (m) 48 0.111 0.46
Runout zone elevation, RZ Elev (m) 48 0.0186 0.90
Surface roughness, SR (m) 48 0.0315 0.83
'Wind Index, WI (ordinal data) 48 -0.104 0.48
'Width of start zone, W (m) 48 -0.238 0.10
Terrain Profile, TP (ordinal data) 48 -0.449 1.4x10°

' Rows for which p < 0.05 are marked in bold

elimination multiple regression methods were used with these seven predictor variables to
obtain the best fit of the predicted values of  to the observed values.

A plot of the predicted against the observed data in the early part of the analyses
showed one significant outlier, Mount Seymour, that had a standard residual in excess of
three standard deviations from the mean. This is the same result found in Section 4.5.2 and
consequently this path was excluded from subsequent analyses. After removal of this
outlier from the regression model, variables were systematically removed from the
regression equation (backward elimination) when they were found to have a minimal
effect on the model (i.e. variable F-values were less than a specified threshold at each step

in the regression). F-values (Table 5.3) were computed at each step in the regression to

Table 5.3. Seven predictor variables used in multiple regression
analyses for u and corresponding backwards elimination F values
Variable F to remove '

Beta angle, B (°) 10.489
[Vertical height to B point, H (m) 0.523
Horizontal reach to p point, X; (m) 7.575
[Vertical height to low point on parabola, H, (m) 0.0359
Scale parameter for path profile, Hy"' 29.021
Second derivative of the slope function, y" 1.039
Terrain Profile, TP (ordinal data) 72.674

' Rows for which F > 3.1 (1% significance level) are in bold
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help facilitate removal of variables from the regression equation. Using a threshold F-

value of 3.1 (1 % significance level, v; = 7, v, = 39; Mendenhall and Sincich, 1996, p.
235, 821), all variables but but Hypy", TP, 3 and X were eliminated from the regression
equation. Additional analyses showed that B and Xj could also be removed from the
regression equation with minimal effect on the results. Thus, f and X were removed and
the remaining two predictor variables in the regression equation were Hyy" and 7P.
Removal of either of these two variables from the regression had a very large adverse
effect on the model, with adjusted R? values going from 0.76 using both variables to less
than 0.40 when either of these variables was removed. The resulting regression equation is
n=0.515+0.578 H,y"-0.107 TP (5.8)
This model has an adjusted R* of 0.76 and a standard error of 0.052, and utilizes 47 of the
48 avalanche paths in the dataset for model development. The regression model has a
significance level of 8.5 x 107, which is highly significant. It can be observed that these
two predictor variables are topographic parameters derived from the slope profile
(Figure 4.1) and were also used in the regression model for estimating o (Section 4.5). The
similarity of Equation 5.8 to the regression equation for a (Equation 4.12) is not
unexpected considering the strong relationship between average p and a. A summary of

the regression model is shown in Table 5.4

Table 5.4 Results of multiple regression analysis for u
Adjusted R*=0.76,n =47 | Coefficient | Standard
SE =0.052, p <8.5 x107° B; error of p; p
Intercept 0.515 0.0295 <10"
Hyp" 0.578 0.0569 41x10"
TP -0.107 0.0125 7.2x10™"
5.6 Residual analysis

The regression model developed in Section 5.4 was accepted as a promising model
based primarily on the fit of the predicted values to observed values of p in terms of the
adjusted R* and the standard error, SE. Before acceptance of this regression model, the

residuals of regression are analysed assess the fit of the model to the data.
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The assumption of constant variance is tested by examining a plot of standard

residuals for random scatter about zero (Figure 5.1). Visual inspection of Figure 5.1 shows

that the assumption of constant variance is satisfied.

The distribution of the standard residuals is shown in Figure 5.2 along with the

expected normal distribution. The K-S test for normality has a d value of 0.15 (p > 0.20),

while the Lilliefors test has a significance value of p < 0.01. Thus, the hypothesis of
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normality of the residuals is not rejected based on the K-S test but is rejected based on the

Lilliefors test. Nevertheless, the model is considered acceptable since the regression
method is robust with respect to non-normal residuals (Mendenhall and Sincich, 1996, p.
412).

The Durban-Watson statistic for this regression has a value of 2.0, indicating that the
residuals are not serially correlated for this model.

Based on Spearman rank correlations between Hp)" and TP (Spearman R = 0.21,
p =0.17, n = 47), these two variables are not cross-correlated at the 10 % significance
level (p <0.10), indicating that strong multicollinearity does not exist in this model.
Different values of Spearman rank correlations were obtained than those calculated
between Hyy" and TP in Section 4.5.4, in which it was found that they were correlated at
the 5 % (p < 0.05) level. This difference may be explained by the inclusion of the two
paths (Monte Blanche LaMontagne and Blowdown Creek) in the regression for p, while
these paths were excluded from the regression for a since they are atypical paths that do
not fit well into the statistical runout estimation methods of Chapter 4. It must be
concluded that these two paths have a large effect on the correlation between Hyy" and TP.

Since the basic assumptions for multiple regression have largely been satisfied, it is

concluded that the regression equation developed for estimating p (Equation 5.8) is
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acceptable.

5.7 Proposed physical effects of independent variables

The two independent variables used in the regression model in Section 5.4, Hyy" and
TP, are topographic parameters that are related to the terrain profile for each path
(Figures 4.1 and 4.2). While both of these parameters are statistically important parts of
the regression model, the physical effect of each variable should be discussed to evaluate
their individual contribution to the model.

The scaling parameter, Hyy" is strongly and positively correlated with p (Spearman
R=0.59, p=28.5 x 10°°), which means that higher values of Hopy" are associated with
higher friction coefficients in the LEM. Since higher friction coefficients provide more
resistance in the dynamics model, they also contribute to shorter runout distances. This is
consistent with the results discussed in Section 4.5.7. The relationship between the scaling
parameter, Hyy", and the average friction coefficient in the analyses using the LEM are
shown on Figure 5.3. Reiterating the findings of Section 4.5.7, highly curved paths
(high y") have greater energy losses associated with decreasing slope angles and

consequently reduced runout potential (higher p). The lowest amount of energy loss would
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be associated with a perfectly linear slope, for which y" = 0. This phenomenon is
accounted for in the LEM by applying a momentum correction (Equations 5.3 and 5.5) at
the transition between segments in the analysis. On a nearly linear slope yy = y in
Equation 5.5, and thus cos(yy - v) = 1. Thus, no momentum correction is applied for a
nearly linear slope.

The variable TP, the terrain profile (Figure 4.2), is strongly and negatively correlated
with p (Spearman R = -0.45, p = 1.4 x 10). Thus, when terrain parameters are taken from
parabolas fitted to path profiles, avalanches in paths with hockey-stick profiles run farther
in relation to paths with other profiles. This is consistent with the results of Section 4.5.7.

A box and whisker plot showing the relationship of TP with p is shown in
Figure 5.4. This figure clearly shows p as a decreasing function of TP. What is most
important to observe is that the range of friction coefficients associated with hockey-stick
profiles (TP = 3) is quite limited, with the friction coefficient lying within the range of
0.29 < <0.55. Fifty percent of these values (25th to 75th percentile) lie in the narrow
range of 0.40 < p < 0.45. It can be observed that a much larger range of friction
coefficients are associated with linear (TP = 1) and concave parabola (TP = 2) profiles.
The low values of p associated with hockey-stick profiles further substantiates the
argument that avalanches in these paths may flow greater distances — perhaps due to
fluidization — upon reaching an abrupt slope transition (Martinelli, 1986; K. Lied, personal
communication, 2002), and possibly also a result of the flow material over-riding snow

trapped at the slope transition (McClung and Mears, 1995).

5.8 Summary

Multiple regression methods were used to develop a model to estimate the average
friction coefficient, p, in the LEM based on various terrain variables. Average values of
the friction coefficient in a path were obtained by fitting the stopping position of an
avalanche in the dynamics model to the interpreted extreme runout position surveyed
during the field studies.

The regression model providing the best fit for the short slope dataset uses the
terrain parameters Hy" and TP to predict p, and is very similar in form to the regression

model for a that was developed in Section 4.5. This result could be expected since p is
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strongly related to observed a. The predictive model for p has an adjusted R* of 0.76 and a

standard error of regression of 0.052, and utilizes 47 of the 48 paths in the dataset. One
path was excluded from the analysis as an outlier since it had residuals more than three
standard deviations from the mean. Residual analyses show that the basic assumptions for
multiple regression have largely been satisfied.

One of the fundamental assumptions of the LEM, that the model be initiated in the
lower part of the track or upper part of the runout zone, was overlooked by initiating
avalanche motion at the top of the starting zone. This can be justified when considering
that the purpose of this analysis was to develop a useful tool for the practitioner to
estimate extreme runout distances, and the very few maximum velocity estimates
available for short slopes.

The regression equation developed provides an average value of the basal friction
coefficient, i, to be input into the LEM to model avalanche motion in short slopes. This
value is only meant to be a first estimate of the friction coefficient, and may need to be
subsequently modified based on the knowledge of other terrain and snowpack variables,
and interpreted with expert judgment. Also, this value may need to be modified for
various parts of the path to reflect changes in terrain and snowpack characteristics. The
importance of hockey-stick profiles with respect to estimating pu was discussed,
particularly with respect to hockey-stick profiles which were shown to be associated with

lower values of the friction coefficient and consequently longer runout distances.
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

6.1 Statistical runout models

Runout ratios for 48 short slopes from four mountain ranges are well fit by a Gumbel
distribution (R* = 0.99, SE = 0.059) when the B point is defined at 24°, rather than the
conventional 10°.

The 4-Range model includes data from all four mountain ranges in the study, implying
that there is little difference between mountain ranges in terms of runout distances for
short slopes when using the runout ratio method.

The runout ratio method was used to develop separate models for individual ranges, of
which only the Coast Range data were well fit (R* = 0.98, SE = 0.072) by a Gumbel
distribution. This result shows promise that an individual range model might be
developed for the Coast Range with additional data.

The best results using the runout ratio method were obtained when the model was
limited to paths with a vertical fall height of less than 275 m (R* = 0.99, SE = 0.063).
This indicates that there is a scale effect in this dataset of short slopes with respect to
runout ratio methods.

Two long-running avalanche paths with runout zones within partly confined stream
channels were noted in the analyses for the models developed using the runout ratio
method. Channelization of the avalanche flow in the runout zone probably contributed
to longer runout distances in these paths.

The model developed using the multiple regression method uses three terrain variables
(Hy", TP and Hy) to estimate the o angle for extreme runout (adjusted R* = 0.79,

SE =1.9°). Scale effects are less pronounced in models developed using the multiple
regression method compared to the runout ratio models.

A comparison of the two statistical methods shows that the runout ratio method
estimates more conservative (longer) runout distances than the regression method for
most non-exceedance probabilities. This effect is very pronounced for the higher non-
exceedance probabilities (e.g. P = 0.99), where the runout ratio method estimates
runout distances up to four times that estimated using the regression method.

Runout estimated by the regression method depends strongly on 8 (the slope angle
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between the a and 3 points) for any non-exceedance probability value, whereas the

runout ratio model is independent of 6 for all given non-exceedance probabilities. The
runout ratio method is more conservative than the regression method for most values
of Pand 6.

When terrain parameters are taken from parabolas fitted to path profiles, avalanches in
paths with hockey-stick profiles tend to run farther in relation to paths with parabolic
or almost linear profiles. This has important implications for estimating runout

distances for short slopes, particularily when applied to land-use planning.

6.2 Multiple regression model for p in the Leading Edge Model (LEM)

Multiple regression methods were used to develop a model to estimate the average
basal friction coefficient, p, in the LEM based on easily measured terrain variables. A
regression model was developed for the short slope dataset that uses the terrain
parameters Hoy" and TP to estimate p, with an adjusted R” of 0.76 and a standard error
of 0.052.

The regression model for p provides an average value of p to simulate avalanche
motion on short slopes with the LEM. This value provides a first estimate of the
friction coefficient, which can be modified based on knowledge of other terrain and
snowpack variables, and interpreted with expert judgment. Also, this value can be
modified for various parts of the path to reflect changes in terrain and snowpack
characteristics.

When terrain parameters are taken from parabolas fitted to path profiles, avalanches in
paths with hockey-stick profiles are associated with lower values of the friction
coefficient and consequently run farther in relation to paths with other profiles.
Considering the limitation of statistical models for estimating runout in atypical paths,

the regression model provides an important tool for estimating runout on short slopes.

6.2 Recommendations for future research

This study included 48 avalanche paths which was sufficient to build models for

combined mountain ranges, but was not sufficient data for properly assessing each range

individually. Thus, a larger dataset could be developed that includes more sites in the
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individual ranges. Most notably, the Coast Range shows promise for having an individual

model developed using the runout ratio method.

Since combined models could be developed for paths from four distinct mountain
ranges in Canada, regional differences between ranges in the models are interpreted to be
weak. However, there may be important climatic variations within these ranges that
influence runout distances. Future studies could look into specific climate variables (e.g.
30-year maximum water equivalent of snowfall) and assess their affect on runout
distances.

The models developed in this thesis could be verified by applying them to other
short slopes both within Canada and internationally. It may be possible to extrapolate this
model for use in other regions of the world, and refine the models by inclusion of paths
from other regions. Verification of the models was not performed in this study due to the
limited number of data. Analyses with additional data to verify the models would improve
the reliability of these models.

The upper limit on the slope height for the regression model could be determined
with more data for taller slopes.

Since the regression model developed for short slopes with the three terrain
variables, Hyp", TP and H,, applies across mountain ranges, this approach could be tried
for taller slopes. It might provide a means of estimating runout across ranges for taller
slopes, especially in areas for which there are no regional datasets and parameters for
existing tall slope models.

While a model for estimating the average basal friction coefficient was developed,
the effect on this coefficient of distance from the starting position, ground roughness,
confinement, velocity and snow properties was not studied. Analyses of these effects
could lead to refined friction coefficients for various segments of an avalanche path, and

to improved calculations of runout, velocity and impact pressures.
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APPENDIX A - EXAMPLE OF FIELD NOTES

An example of field notes taken during the survey of the Hector Ridge North
avalanche path in the Rocky Mountains is shown in Figure A.1. Field notes were recorded
in a field book on water-resistant paper. General terrain characteristics were recorded on
the first page, and survey notes were recorded on subsequent pages. Field observations
were recorded in a manner consistent with guidelines developed as part of the Canadian
Avalanche Association’s “Introduction to Snow Avalanche Mapping” course (Canadian
Avalanche Association, 2000) and Martinelli (1974).

Columns for the survey notes include: Pt., the survey point number; Slope Down, the
slope angle measured with the clinometer down the slope; Slope Up, the slope angle
measured up the slope; Dist, the slope distance measured from the starting position or the
segment length between survey points; Elev., the elevation measured with an altimeter;
and Comments, a column reserved for any other observations. The comments column
includes information on observations of vegetation in the path, including estimated return
periods for large avalanches and the interpreted extreme runout position. Estimates of o

and P are included in the field notes when they were measured during the field survey.
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APPENDIX B - SAMPLE PROFILE

An example of a profile for the Schroeder Shoulder avalanche path in the Columbia
Mountains is shown in Figure B.1. This profile shows measurement points numbered from
1 in the starting position to 23 at the Trans-Canada Highway. Point 22 represents the
interpreted extreme runout position interpreted from vegetation damage observed during
the field survey. The coordinate system is measured from the origin in the lower left of the
figure. It can be observed in Figure B.1 that the Schroeder Should path is a very good
example of a hockey-stick profile, with an abrupt transition from the track to the runout

zone at Point 18.
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